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Abstract

This paper presents a novel framework for the analysis of a 3-RRR spherical parallel manipulator with
coaxial input axes (coaxial SPM) with the focus on its infinite rotational motion capabilities and its effects
on the manipulator’s characteristics. The framework consists of three phases. At first, an approach for
obtaining unique solutions of forward and inverse kinematics problems is introduced for setting up univocal
relation between coaxial SPM’s input joint positions and orientation of its end-effector. At the second phase,
a method for generating infinite rotational motions of an end-effector is formulated. The third phase outlines
numerical computation procedures of the coaxial SPM’s workspaces in the joint and Cartesian spaces, ex-
cluding singularity configurations and mechanical collisions of SPM’s links during infinite rotational motion.
A 3D design model and an experimental prototype of the coaxial SPM is presented and utilized for numerical
analysis and experimental verification of the presented framework supplemented by an accompanying video

demonstration.
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1. Introduction

Parallel manipulators are under constant atten-
tion of academia and industry due to their theoret-
ical advantage over serial manipulators regarding
their increased positioning and orienting accuracy,
mechanical rigidity and performance in high dy-
namic motions. However, such manipulators need
a very detailed research and analysis conducted on
them before they can find their use in industry [I-
5]. A class of parallel manipulators known as spher-
ical parallel manipulators (SPMs) is able to provide
a three degrees-of-freedom (3-DOF) pure rotational
motion. They are considered to be an alternative
to traditional robotic wrists utilizing serial arrange-
ment of their links [6] and can serve as spherical
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motion generators [7]. Their application spans from
manufacturing [8] and motion control platforms [9]
to medicine [I0} T1] and rehabilitation [12] 13].

Among numerous types of 3-DOF SPMs that
were synthesized [14HI8], the 3-RRR type SPMs,
i.e.,, with three revolute joints (R) at each of the
three parallel chains, are the most studied in de-
tail (hereafter - general SPM). The early research
works by Gosselin et al. [I9H21] set the founda-
tions of kinematic design and analysis of 3-RRR
SPMs. These works introduced the notation and
approaches to solve forward and inverse kinemat-
ics of general SPMs. It was also validated there
that multiple solutions to both forward and inverse
kinematic problems exist. Despite the substantial
theoretical research conducted on this topic, only a
few SPMs were designed and built in the real world
for experimental analysis and practical applications
[22, 23).

The above-mentioned works primarily focus on
SPMs with a limited range of motion of the DOF
corresponding to an end-effector’s rotation around
its normal vector. For example, the Agile Eye
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[9) prototype is capable of only +30° of the end-
effector’s twist. This limitation does not allow such
SPMs to be used to the fullest extent as active ball
joints or orientation platforms for machining tools
[24] since these applications often require complete
360° or infinite rotational motion. A special case of
the general SPM with a collinear (coaxial) arrange-
ment of its input axes (hereafter - coaxial SPM)
does not have this limitation, making it a potential
candidate for such applications.

Coaxial SPM’s kinematic structure shown in
Fig. [[p was initially presented in [25], where sev-
eral serial and parallel wrist joints were assessed for
their kinematic and static performances. The opti-
mal design of such wrist joints was considered from
the reduced singularity and uniform velocity behav-
ior viewpoints. It was reported that for specific geo-
metrical parameters of the coaxial SPM’s links, the
velocity ratio is much more isotropic and less depen-
dent on the SPM’s configuration. One of the advan-
tages of the proposed manipulator in [25] is that
it has no singularities inside the workspace, only
on the boundaries, compared to the serial coun-
terparts. This SPM architecture was further stud-
ied in [26] by Gosselin et al., where it was shown
that such SPMs have eight solutions for the forward
kinematic problem similar to the general SPMs.
Subsequently, the coaxial SPM was used to design
marine propulsors [27, 28] and a robotic link mech-
anism [29]. In these works, actuators are fixed and
located on the base of the designed devices, which
allows remote actuation of the mechanisms and, in
general, decreases manipulators’ inertia. Alterna-
tive mechanical design of the coaxial SPM, with
sliding actuators was presented in [30], B1], which
improves stiffness of the manipulator’s legs due to
the presence of a circular guide. The subsequent
works [8 32] focus on design optimization of this
proposed coaxial SPM’s design from the kinemat-
ics and dynamics viewpoints with no reported ex-
perimental demonstration on the physical coaxial
SPM’s prototype. SPMs with infinite rotation of
the end-effector around its normal vector were also
accomplished using different joints arrangement,
such as in [33] were authors analyzed a 3(RSS)-S
fully spherical robot. Other theoretical mechanical
designs of the coaxial SPMs were based on kinemat-
ically asymmetrical SPM, i.e., with different com-
bination of joints in each link, were also reported
[34-36]. In general, analysis of such mechanisms
is more complex than that of symmetrical SPMs,
which demands further efforts for their physical re-

alization.

Despite the considerable interest in the coaxial
SPMs, the above reviewed works focus primarily on
mechanical design optimization, kinematic and dy-
namic analyses of the proposed SPM designs with-
out considering the effect of the infinite rotational
motion on the manipulator’s workspace and the
ways to achieve such motions. To the authors’ be-
lief, no research works were publicly reported to the
date, outlining theoretical foundations for the gen-
eration of infinite rotational motions of the coaxial
SPM with the corresponding joint space and Carte-
sian workspace analyses required for practical appli-
cations of such manipulators. This paper addresses
this knowledge gap and presents a novel framework
for generating infinite rotational motions and fur-
ther kinematic analysis of the SPM with coaxial
input axes. It consists of three phases. The first
phase, outlined in Section [2 presents the approach
for obtaining unique solutions to the forward and
inverse kinematic problems for univocal relation of
the coaxial SPM’s input joint positions to the ori-
entation of its end-effector and vice versa. At the
second phase, a method for generating infinite rota-
tional motions of the manipulator’s end-effector is
formulated as detailed in Section [3] The last phase
is presented in Section It outlines singularity
and link collision detection procedures for numeri-
cal computation of the coaxial SPM’s configuration
space and the Cartesian workspace, considering in-
finite rotational motion feature of the manipulator.
A 3D CAD model and an experimental prototype of
the coaxial SPM are presented in Section [5|and uti-
lized for numerical analysis and experimental ver-
ification of the presented framework in Section [6]
supplemented by an accompanying video demon-
stration.

The approaches and numerical computations pre-
sented in this paper are a systematic revision and
extension of the preliminary results reported in the
authors’ conference works [37, B8]. A combined
framework for generating infinite rotational mo-
tions of a coaxial SPM and study of their effects
is the main contribution of this paper. In contrast
to the author’s earlier works [39) [40], a numerical
approach presented there for computing the unique
forward and inverse kinematics of a coaxial SPM
was revised for a better alignment of analytical for-
mulations with the pioneering work on SPM [21]
and augmentation by a novel expression for auto-
mated definition of an initial guess vector. The
second contribution of this paper is the overall ex-
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Figure 1: SPM’s kinematic models: (a) general SPM, where @ - mobile platform, @ - distal link, @ - proximal link; (b)
coaxial SPM; (c¢) positive direction of the input joint positions with respect to the home configuration (shown only with the

proximal links).

perimental implementation and verification of the
proposed framework on an experimental prototype
of the coaxial SPM, thus demonstrating its practi-
cal applicability to design SPM-based mechanisms
with infinite rotational motion capabilities.

2. Kinematic Analysis

Kinematic analysis, configuration space (joint
space) and Cartesian workspace characterizations
are important first stages in the design of robotic
manipulators. These procedures are more compli-
cated for parallel manipulators comparing to serial
ones. In the case of the coaxial SPM and 3-DOF
3-RRR SPMs in general, as was mentioned previ-
ously, there exist multiple solutions to its forward
and inverse kinematic problems [20]. Analytical so-
lution to the inverse kinematic problem of 3-RRR
SPMs was derived in [19, 41]. Whereas, the closed-
form solution to the forward kinematic problem of
3-RRR SPMs using polynomial approach was pro-
posed later in [21], where the authors derived a
polynomial of degree 8, and demonstrated that this
polynomial is minimal and solving it provides 8 real
solutions to the SPM forward kinematic problem.
Later, a different approach based on semigraphical
method was proposed in [42]. This method is based
on the input—output equations of spherical four-bar
linkages and requires solving derived trigonomet-
ric equations semigraphically to obtain the joint
variables for the determination of the moving plat-
form orientation. Both methods, i.e., polynomial

and semigraphical, involve solving complex nonlin-
ear equations that may be computationally heavy
for implementation of real-time control of SPMs.
Therefore, special architectures of SPMs resulting
in simplified kinematic equations were proposed in
[26] 43], that are employed for achieving real-time
control of a SPM with special architecture (Agile
Eye) in [9]. It is also a common practice to add
extra sensors to obtain redundant data resulting in
simplified closed-form solutions [44}, [45] or to utilize
various numerical methods to solve forward kine-
matic problem of parallel manipulators [46]. More-
over, for control applications it is also required to be
able to select a single solution from the several ones,
such that it always corresponds to a specific assem-
bly of SPM. In this regard, a numerical approach
for obtaining unique solutions, corresponding to a
working or assembly mode of a real SPM, was pro-
posed in [39]. Identification of one unique solution
for the forward and inverse kinematics is required
for orientation and/or stabilization control and mo-
tion planning of a device based on SPM architecture
[47,[48]. This approach was subsequently utilized to
develop offline motion planning and real-time ori-
entation control frameworks for this type of SPMs
using convex optimization techniques that were ex-
perimentally verified on the Agile Wrist SPM pro-
totype in [40, 49]. The author’s preliminary works,
[37] and [38], report extension of the results from
[39, [40] to a coaxial SPM model case study and
discuss its unique forward and inverse kinematics,
assembly and working modes, generation and sim-



ulation modeling of infinite rotational motion, re-
spectively. This approach was also tested and ver-
ified via external control of a simulation model of
coaxial SPM in CoppeliaSim (formerly known as V-
REP) [50] open-access virtual robotic simulator in
[51]. Parallel manipulators can be physically simu-
lated and controlled in CoppeliaSim directly or re-
motely from external environments such as MAT-
LAB. Position data about manipulator’s joints, ob-
tained directly in CoppeliaSim, were used for ver-
ification analysis of the proposed approach in [51].
As a result, it was concluded that the numerically
derived unique solutions to the SPM forward kine-
matic problem coincide with the simulated orienta-
tion of the physical SPM model (Figure 6 in [51]).

Being a special case of the general SPM, kine-
matic analysis of the coaxial SPM is based on the
same fundamentals as in [20] 21], 42, [52]. This sec-
tion briefly introduces fundamentals of SPM’s kine-
matics, as well as a revised approach for obtaining
unique kinematic solutions of the coaxial SPM, ini-
tially presented by the authors in [37].

2.1. Kinematic Model

A geometric model of the general 3-RRR SPM is
represented as two triangular pyramid-shaped plat-
forms, mounted on top of each other and sharing a
single vertex as shown with dotted lines in Fig. [Th.
The lower platform is a (stationary) base and is de-
fined by angle v. The upper platform is a mobile
platform, which undergoes 3-DOF spherical motion,
and is defined by angle 5. In the special case of the
coaxial SPM, the lower platform is degenerated to a
single line by coaxial placement of the base joints,
ie. input joints, as demonstrated in Fig. [Ip. In
this arrangement of the base joints, angle v = 0°.
Such special arrangement of the input joints allows
infinite rotational motion of the SPM’s mobile plat-
form.

Three equally spaced parallel chains connect the
mobile platform to the base. They are enumer-
ated as ¢ = 1, 2, 3 in the counter-clockwise direction.
Each chain consists of two curved links: proximal
and distal. The curvature of the proximal link is de-
fined by angle oy, whereas that of the distal link is
defined by angle as. Each parallel chain has three
joints, the axes of which intersect at the common
point known as the center of rotation. Those axes
are defined by the unit vectors u;, w;, and v;, re-
spectively from the base to the mobile platform, ag
denotes an angle between any two unit vectors v;.

To define location of the mobile platform, a sta-
tionary coordinate system needs to be set up. The
right-handed coordinate system is placed at the
center of rotation as shown in Fig. [Ip. The z-axis is
directed upwards, whereas the z-axis is orthogonal
to the z-axis and is pointing towards the interme-
diate joint of the first parallel chain at the home
configuration. The right-hand rule is used to deter-
mine the y-axis. At the home configuration, proxi-
mal links are located 120° from each other, making
the mobile platform horizontal with its normal vec-
tor coincident with the positive z-axis.

The inputs to the coaxial SPM are provided by
actuating proximal links via base joints. Those
input joints positions are measured in the clock-
wise direction from the central symmetry planes of
the proximal links at the home configuration till
the same planes at the resultant location as illus-
trated in Fig. [[c. The input joints positions are
represented by vector 6 £ [01, 0o, 03] T, and at the

home configuration it is set to 8 = [0, 0, O]T.

Following the earlier definition of the coordinate
system, the base joints’ unit vectors u;, ¢ = 1,2, 3,
are expressed as:

0
u; = 0 . (1)
-1
The intermediate joints’ unit vectors wy,
i =1,2,3, are defined as follows:

cos(n; — 0;) sinay
w; = |[sin(n; — 6;)sinay |, (2)
—cos o
where 1; = 2(i — 1)7/3, i = 1,2, 3.
The orientation of the coaxial SPM is defined by
the the unit vectors of the mobile platform’s joints
Vi, 1= 1, 2, 3.

2.2. Forward Kinematics

In the case of the coaxial SPM, the forward kine-
matics is used to describe the orientation of the
mobile platform in terms of the unit vectors v;,
1 =1,2,3, given the input joint positions vector 6.
To compute these unit vectors, nine independent
equations are derived from geometric constraints of
SPMs [42]:

W; - V; =cosaq, 1=1,2,3,

,Jj=123, i#], (3)

Vi V; = Cosag,
[vill =1,



s

where ag = QSinil(SiHBCOS 6) is the angle be-
tween axes of the ith and jth mobile platform joints
(Fig. [ib), and ||-|| is the Euclidean norm.

The system of equations provides multi-
ple solutions and can be solved for v;’s numeri-
cally. In this work, the trust-region numerical op-
timization method for solving nonlinear program-
ming problems is employed [53]. In MATLAB,
it is implemented as fsolve function with a de-
fault trust-region-dogleg algorithm and an ini-
tial guess vector xg. In case of Python, it is imple-
mented with scipy.optimize.minimize method
with method = ’dogleg’ parameter and the same
initial guess vector @y as in MATLAB’s case. This
vector’s values are the guesses of z, y, and z compo-
nents of the unit vectors v;, ¢ = 1,2, 3, represented
as follows:

T
To = [vzm, Viyy Vizy U2z, V2y, U2z, Usz, V3y, Us’z] . (4)

In this paper, the [-I- assembly mode [37] is cho-
sen for the analysis, meaning that all distal links
are located to the left of the central symmetry plane
of the respective proximal links. By the definition
of this assembly mode, it is expected that the unit
vectors v;, ¢ = 1,2, 3, are always further in the posi-
tive direction of link rotations (clockwise), thus the
guess vector is chosen as the positive shifted in-
stance of the unit vectors w;, ¢ = 1,2, 3, and point-
ing in the same z direction as at the home configu-
ration. An example of such shift of the unit vectors
w;, 1 =1,2,3, could be a 10° rotation around the
z-axis, expressed using the Rodrigues’ rotation for-
mula [54] as follows:

0
Wi rot = W; cos 10° 4 (Wi x |0 > sin 10°+
1
5
ol /To (5)
+()<O~w)@—mﬂmyi:LZ&
1 1

The resultant guess vector is then formulated as
follows:
Lo = [wlz,rota Wiy,roty —Wiz,rot,
Wag,roty Wey,roty — W2z rot, (6)
T
W3z, roty W3y,rot> _w32,rot]
The z components of the guess vector, i.e. wy; rot,
Wz, rot, a0 W3, rot, are negated as the unit vectors

w;, i = 1,2,3, have these components in the neg-
ative z direction (for cases when a; < 90°), but

typically the unit vectors v; ¢ = 1,2, 3, have z com-
ponents pointing in the positive direction. Selecting
this guess vector allows to obtain a unique solution
of the forward kinematics problem corresponding to
the [-I-] assembly mode. Note that for the alterna-
tive symmetrical r-r-r assembly mode, will have
—10° shift (negative direction of rotation).

The computation process of a unique forward
kinematics solution is summarized in the updated
Algorithm [1} It was initially formulated and exper-
imentally verified by the authors in [37]. Here, an
additional step for calculating w; is introduced for
obtaining a new guess vector.

Algorithm 1: Obtaining a unique solution
of the forward kinematics problem of a coax-
ial SPM
Input: 0, ay, as, B, g, 75, 1 =1,2,3
Output: Unique unit vectors v;, i =1,2,3

Calculate a3 = 2sin™? (sin [ cos %);
for i <+ 1 to 3 do

Calculate w; using given 0;
L Calculate w; .ot using ;

Calculate initial guess vector x( using @;
Calculate v;, i = 1,2, 3, by solving the
system of equations numerically, given
w;, ¢ = 1,2, 3, with initial guess vector xy;
return v;, 1 = 1,2,3

2.3. Inverse Kinematics

In the case of the coaxial SPM, the inverse kine-
matics is used to compute the input joint positions
vector 6 that can be applied to bring the mobile
platform to a specific orientation described by the
unit vectors v;, i = 1,2,3. Three uncoupled equa-
tions used to compute each of input joint positions
0;, i =1,2,3, are formulated as follows [20]:

AT +2B, T+ Ci=0, i=1,2,3, (7)

T, = tan<02i>. (8)

These equations are derived from the first equa-
tion from the system of equations (3)), and have

with



coefficients A;, B;, and C; formulated as follows:

A; = — cosn;sin o vy — sinn; sin o viy—
— COS (v U, — COS (42}
B; = sinn;sin o vy, — cos 1; Sin o vyy; 9)

C; = cos1); sin a1 Vg + sinn; sin o viy—

— COS (X1 Vi — COS (v,

where v;;, vy, and v;, are components of the unit
vectors v;, 1 = 1,2, 3.

Compared to the numerical computation of the
forward kinematics solutions, the inverse kinemat-
ics solutions are solved analytically. Equations
are decoupled quadratic equations for each input
joint position 0;, i = 1,2,3 with two roots for each
T;. This results in total of eight combinations of
possible solutions for the input joint positions, rep-
resenting eight working modes. To compute the so-
lution corresponding to the coaxial SPM operating
in the I-I-] working mode as discussed in [37] 49], it
is necessary to select the solution that corresponds
to the roots with added square root of the discrim-
inant (the definition of the positive direction of ro-
tation). On the other hand, the combination corre-
sponding to the roots with subtracted square root
of the discriminant presents the solution for the r-
r-r working mode.

Similarly to the forward kinematics, the updated
Algorithm 2] for obtaining unique solutions of the
inverse kinematics problem is given below. It was
initially formulated and tested by the authors in
[37). However, compared to the previous version of
the Algorithm, the coefficients A;, B;, and C; are
calculated differently. The direction of legs index-
ing (counter-clockwise), the definition of the posi-
tive direction of rotation (clockwise, right-hand rule
applied on vectors u;, ¢ = 1,2, 3), and the alignment
of the SPM’s home configuration with the fixed co-
ordinates system have been modified from that of
[37]. This has been done in order to comply with
the pioneering works of Gosselin et al. [2I] and to
preserve nomenclature and definition consistency.
Introduction of these changes resulted in modifica-
tion of @ for calculating coefficients A;, B;, C;.

3. Generation of Infinite Rotational Motions

Ability to generate infinite rotational motions of
the mobile platform around its normal vector, as
shown in Fig. [2] is one of the distinctive features
of the coaxial SPM that makes it different from the

Algorithm 2: Obtaining a unique solution
of the inverse kinematics problem of a coax-
ial SPM

Input: v;, i =1,2,3, a1, as, n;

Output: Input joint positions vector 6

for i + 1 to 3 do

Calculate A;, B;, C; using @D given v;;

Solve equation for T;;

Find 6; using equation and select
solution coming from the root with
added or subtracted square root of the
discriminant for I-I-I or r-r-r working
mode, respectively;

return 0;, i =1,2,3

Figure 2: Rotation of the coaxial SPM mobile platform
around its normal vector n by angle o.

other special kinematic architectures of the 3-RRR
SPMs such as the SPM with coplanar actuators [20]
or the Agile Fye [9]. Rotational motion of the coax-
ial SPM requires generation of the sequence of input
joint positions 6y,.j, i.e., actuator motion trajec-
tories. This section presents an approach of tra-
jectory generation for infinite rotational motions of
the coaxial SPM.

In the proposed framework, the orientation of the
coaxial SPM’s mobile platform is defined by the
unit vectors v;, ¢ = 1,2,3. Hence, the rotational
motion of the SPM’s mobile platform around its
normal vector n can be interpreted as the rotation
of the unit vectors v;, i = 1,2, 3, around the same
vector n, which is computed as:

vy + vy + vy

n= ———. VB #90°,
[vi+va +vs] (10)
V1 X Vg

n=2*Y2 g _gpe.
[vi x va

The instantaneous orientation of the SPM’s mo-



bile platform during the rotational motion is de-
fined by the unit vectors v; ¢, ¢ =1,2,3, and is
computed using the Rodrigues’ rotation formula
[54):

Virot =V; €080 + (v; X n)sino+

(11)

+n(n-v;)(1—coso), =123,

where o is a rotation angle of the SPM’s platform
measured from the starting configuration till the
final rotational instance as shown in Fig.

In order to generate trajectories for infinite ro-
tational motion, a single full 360° rotation of the
SPM'’s mobile platform is sampled into a sequence
of S instances with the rotation angles as:

0':{0'1, g9, ... 0’5}. (12)

A uniform sampling interval of the rotation is em-
ployed for the simplicity of the numerical analysis,
O — oj+1 —0j, J=1,2,....§ — 1, is constant.

The procedure for obtaining a unique inverse
kinematics solution, i.e., Algorithm [2] is executed
at each instance. When using (8] to find 6; value
via arc-tangent function, Algorithm [2] returns out-
put values on the scale from —180° (—) to +180°
(+). From this it follows that, once any of the
input joint positions 6;, i = 1,2, 3, reaches +180°
(4) side, it will start from the —180° (—) side at
the next rotational instance. To ensure continuous
motion trajectory, such jumps in the input joint po-
sitions’ values have to be accounted by adding an
extra 360° (27) to the input joint position expe-
riencing it, starting the instance it happened 6, ;,
j = 2,3,... 5, till the end of the motion trajec-
tory 6; 5. As a result, the input joints trajectory
0.,.; that leads to a single rotation of the SPM’s
mobile platform around the vector n is generated.
The infinite rotational motion of the coaxial SPM is
achieved by applying the obtained input sequence
0:rq; repeatedly. However, each following rotation
has to be adjusted by adding an extra 360° (27) to
the input sequence 0,.4; at the time when the on-
going rotation is finished, again, to ensure motion
continuity.

Before applying the generated motion trajec-
tories on the manipulator itself, it is neces-
sary to verify that none of the input joint
positions require any of the proximal links to
surpass the neighboring ones by going through
them in order to achieve corresponding orien-
tation. An example of such link surpass is

the input joints positions 6 = [200"7 150°, 1000] T,

which following Algorithm [2] will be obtained as
0 = [~160°,150°,100°] " In this case, the calcu-
lated input joint positions require the proximal link
1 to move in the opposite direction comparing to
the other two proximal links, resulting in its colli-
sion with the prozimal link 2 while trying to sur-
pass it. In general, link surpass happens when one
of the input joint positions is greater than the next
input joint position in the positive (clockwise) di-
rection of SPM movement, i.e. 83 — 03, 5 — 61, or
01 — 03 is not greater than 120° (the thickness of
SPM links is ignored). To solve this issue an extra
360° (27) needs to be added for the duration of the
entire motion trajectory to the proximal link being
the earliest in the positive (clockwise) direction.
The presented approach for the infinite rotational
motion generation is summarized in Algorithm [3]
It applies to the rotational motions at the desired
locations that do not lead to singularities or link
collisions. Details on how to check for singularities
and link collisions are presented in the next section.

4. Configuration
Analyses

Space and Workspace

This section presents a method for numerical
analysis of the coaxial SPM’s configuration space
and the Cartesian workspace for the case of singu-
larity and link collision free infinite rotational mo-
tions.

4.1. Singularity Detection

As for the most of other manipulators, singular-
ity issues need to be considered and analyzed before
setting the coaxial SPM into a motion. It is nec-
essary to keep manipulator away from singular and
near-singular configurations as its controllability is
weak at these points.

Singularity analysis of parallel manipulators is
based on the early work of Gosselin and Angeles
[55], where they described the relationship between
the input and output speeds as follows:

0 =Jw, (13)

where w is the angular velocity vector of the mo-
bile platform, @ is the vector of actuated joint rates,
and J is the Jacobian matrix that maps the angu-
lar velocity vector w to the vector of actuated joint
rates 6.



Algorithm 3: Rotational motion trajectory
generation for a single rotation of a coaxial
SPM
Input: v;,:=1,2,3, a1, ag, 0, O
Output: Input joints trajectory rq;

Calculate n using given v;;
for j < 1to S do

Calculate v; j, @ = 1,2, 3, using with
o; and n;
Calculate input joint positions 8; for
each v; j, ¢ =1,2,3, using Algorlthm l
01r0;(j) + 6;;
/* check for 360° jumps in Oipq; */
for k< 1toS—1do
if 01,;@ — 91,k+1 > 0° then
| 011 = 0111 + 360%;
if 05 — 02 141 > 0° then
| O2k41 = 0241 + 360°;
if 03,,6 — 93,k+1 > 0° then
L 03.k+1 = 03 11 + 360°;
/* check for link surpass */
if 9371 — 9271 > 120° then
L 02.1..5 = 021..5 +360°
if 92}1 — 91’1 > 120° then
L 011..s =011..s +360°
if 01,1 — 9371 > 120° then
L 031..5 = 031...5 + 360°;
return 6y,

The Jacobian matrix can be expressed as [20]

J=-J3;'J,, (14)
which leads to the equivalent representation of :

J1w+J29 =0. (15)

Here, J; and J, are both n x n Jacobian ma-
trices (n = 3 for coaxial SPM), and configuration
dependent, i.e., J; = J1(v;,0) and Jo = Ja(vy, 0).
For 3-RRR SPMs, these matrices are defined as [55]

(W1 X Vl)T

J1 = (Wg X VQ)T N (16)
<W3 X Vg)T

Jy = diag(wy X uy - vy,
Wo X Ug * Vo, (17)

w3 X us - Vg).

Singularities occur in the cases when either J; or
J5 or both simultaneously are singular, i.e., det(J;)
= 0 and/or det(J2) = 0. In other words, there exist
three types of singularity cases for parallel manip-
ulators as described in more details in [55]. This
methodology was used by Gosselin et al. in [56],
where singularity loci of the Agile Eye SPM were
analyzed. The same methodology was applied by
Bai et al. in [57] for singularity analysis of their
proposed coaxial SPM design.

All three types of singularities of parallel manip-
ulators have different physical interpretation. The
first singularity type occurs when det(J2) = 0. It
lies on the boundary of the Cartesian workspace,
where the mobile platform loses one or more DOFs
[56]. It happens when any of the SPM’s legs is com-
pletely folded or unfolded, resulting in the ability of
the mobile platform to resist one or more moments
without exerting any torque at the input joints.
The second singularity type occurs when det(Jq)
= 0. In this configuration, the mobile platform can
move despite of the actuators being locked [56]. It
corresponds to configurations in which distal links
either lie on the plane of the mobile platform or are
orthogonal to this plane. Example of such config-
uration is shown in [57]’s Fig. 8. Generally, such
configurations are not reachable due to the phys-
ical interference of the links. Bonev and Gosselin
published the work dedicated to this type of SPM
singularities [58], since they can appear inside the
Cartesian workspace and require more attention. It
was found out that for coaxial SPMs with g = 90°,
the second singularity type can occur only when the
mobile’s platform tilting is 0°,90°, or 180°, and only
when a; = ao = 90°. The third singularity type oc-
curs when the SPM has a; = as, and results in a
situation in which actuators’ motion does not lead
to the motion of the mobile platform [55]. This
singularity type is an architectural singularity [56].
Thus, appropriate selection of geometrical parame-
ters of the SPM links, allows to eliminate presence
of the second and the third singularity types.

In this work, conditioning index ¢(J) € (0,1) is
used to estimate proximity of a particular SPM con-
figuration to any singularity. It is is defined as [20]:

1
‘D= 18



where ||J|| is obtained as:

||| = 4 [tr (JT;IJ>, (19)

and I denotes a 3 x 3 identity matrix.

Near-singular configurations are the ones with
¢(J) being close to 0, whereas non-singular con-
figurations have ((J) equal to 1. This index is
commonly used for SPM design optimization and
dexterity analysis such as in [I1}, 59H6I]. To sepa-
rate near-singular configurations from non-singular
configurations, a threshold value {(J)n is used.
This technique was previously applied by the au-
thors to general SPM workspace computation in
[49]. The same definition of the near-singularity
based on a condition number of the Jacobian ma-
trix is exploited in [62] to determine near-singular
configurations of a Stewart platform.

For a sampled rotational motion of the SPM’s
mobile platform, ((J) is computed at each rota-
tional instance. If any of ((J) values during the
rotation is below the threshold value {(J),in, this
rotational motion’s trajectory is considered to be
not singularity-free and is avoided.

4.2. Link Collision Detection

Generation of link collision free motion trajecto-
ries were considered in the author’s previous works
[40, 49], where two link collision detection ap-
proaches were proposed for the case of the general
SPM. In [40] the SPM links are approximated by
using sets of line segments with coordinates defined
as a function of 6, knowing the manipulator geom-
etry. The drawback of this method is that it gives
only a rough estimate of the collision due to the link
approximation that reduced overall computed con-
figuration space. This was shown in [49] through
the comparison of the SPM joint spaces, computed
using the first link collision detection approach and
the experimental one based on providing control in-
puts to a real-world SPM prototype and measuring
motor supply currents. In the event of collision, the
current in at least one of the actuators was sharply
increasing. This approach estimates collision more
accurately compared to the first one, but it requires
the availability of the operational SPM prototype.
Another issue with this method is that it disre-
gards possible joint configurations that are achiev-
able in general, but not reachable from the home
configuration directly. In this work, this problem
is solved by performing link collision detection on a

3D SPM prototype model in a virtual robot simula-
tor. This approach ensures more accurate detection
of link collisions at all possible configurations and is
a faster process as it does not require the availabil-
ity of an experimental manipulator prototype with
implemented motion control.

The authors propose to model motion of the
coaxial SPM prototype for kinematic analysis, link
collision detection and control system development
using CoppeliaSim robot simulator as detailed in
[1]. In the event of the link collision, the simula-
tor’s link collision module signals that visually by
coloring collided links, and can send collision flag
with the IDs of the collided links to a remote client
if requested to do so. CoppeliaSim’s collision detec-
tion module implements the algorithm for efficient
and exact interference detection amongst complex
polygonal models, e.g. SPM links, based on hier-
archical representation of the models using tight-
fitting oriented bounding box trees. At runtime,
the algorithm traverses two such trees and tests for
overlaps between oriented bounding boxes [50, [63].

In this work, the CoppeliaSim collision check rou-
tine is repeated at each rotational instance of the
sampled rotational motion of the coaxial SPM’s 3D
simulation model. If any of the manipulator’s link
collide during the rotational motion, this motion is
treated as not safe and is avoided.

4.8. Configuration Space

The configuration space of a spherical robot-
manipulator is defined as the set of all input joint
positions that are feasible. Feasibility is determined
based on the singularity and link collision checks.
Input joint positions that do not lead to singular or
near-singular configurations and do not cause link
collisions are feasible.

Feasibility verification of a given configuration
6 of the coaxial SPM can be done combining the
approaches for singularity and link collision detec-
tion described in the two previous subsections. The
space of feasible configurations is generated numer-
ically in this case by scanning through the 3D grid
of all possible combinations of input joint positions
and performing feasibility test at each node. Un-
feasible configurations are not included in the con-
figuration space.

The coordinates of the 3D grid’s nodes belong to
sets

¢i = {91'71, 91'72, .

Oing ), i=1,2,3, (20)



where M, indicates the size of the set to which a
particular input joint position 6; belongs to. A uni-
form sampling interval of the joint configurations is
employed for the simplicity of the numerical anal-
ysis, i.e., 0p = 0; 541 — 0, § = 1,2,... M; — 1 is
constant, and M, = My = Ms.

As was discussed in Section 3] some joint con-
figurations may cause the link surpass. To reduce
the computational burden, nodes representing such
configurations can be excluded right away with-
out performing feasibility tests on them, since no
physical manipulator is capable of performing link
surpass motions in the real world. The remaining
nodes are subjects of the singularity and link colli-
sion checks.

After performing feasibility verification proce-
dure on all nodes of the 3D grid, a set V, that rep-
resents the union of all feasible joint configurations
of the coaxial SPM, is created. This procedure is
presented in Algorithm [l Computation of the set
V allows evaluation of control limits of a manipu-
lator and dependencies between each actuator, i.e.,
safety margins for actuators’ operation. This set
can also be used to generate optimal motion tra-
jectories for control purposes, e.g. shortest path in
joint space.

4.4. Cartesian Workspace

Cartesian workspace analysis allows to find the
physical limits of the SPM’s mobile platform’s mo-
tion. It represents a collection of the locations that
are reachable by the coaxial SPM prototype and
where its infinite rotational motion is possible.

In order to numerically evaluate the coaxial
SPM’s workspace, a grid of points Wiepm, is gen-
erated. In this work, an icosahedral grid [64] nor-
malized to a unit sphere is selected. This grid
provides almost-equally distributed test nodes, and
contains the Cartesian coordinates of each one of
them. The interval between test nodes is deter-
mined based on the applied g-level (grid division
level). The number of test nodes is N = 2x 102 +2,
where [ = {0,1,2,3,4,...} is the g-level. The aver-

age interval is equal to %\ / 2?“ If lower precision for

the Cartesian workspace is acceptable, it is worth
increasing the interval between nodes by selecting
lower g-level value to reduce processing time.

At each test node, the unit vectors v;, i = 1,2, 3,
are reconstructed by selecting vector vy that is de-
fined by the cross product of the test node position
(i.e. its Cartesian coordinates as normal vector n)
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Algorithm 4: Numerical computation of
the configuration space of a coaxial SPM

Input: ay, Qg, 67 Lo, Tis ¢i> 1= 11273
Output: Set V

YV«

for a; < 1 to M; do

for a; < 1 to M5 do

for a3 < 1 to M3 do
singularity < false;
collision < false;

/* link surpass check */
if 93(&3)-— 92(&2):> 120° or
92(@2) —-91(@1):> 120° or
91(@1) — 93(&3) > 120° then
collision < true
break
0+ [91(&1) eg(ag) 93(&3)]T;
/* forward kinematics */
Calculate w; and v;, i1 = 1,2, 3,
given 0 using Algorithm
/* singularity detection */

Calculate J given u;, w; and v;,

i=1,2,3, following —;
Calculate ¢(J) given J, following
and ;
if {(J) < ((J)min then
singularity < true
break

/* link collision detection */
Send 6 to the coaxial SPM
motion simulator;
if collision handle == 1 then
collision < true
break
/* update the space */
if singularity == false and
collision == false then
| YV« VYu{e}

rgturn V

and the vector pointing in the positive z direction:

n x [0,0,1]"

In % [0,0,1]" )

V1 =

Remaining vectors vy and vs are found using the
Rodrigues’ rotation formula as follows:

vy =vicos120° 4+ (n X vq)sin 120°+

+n(n-vy)(l—cos120°), (22)



vy =v7c08240° + (n x vyp)sin 240°+

+n(n-vy)(1—cos240°). (23)
Subsequently, an input sequence 6y.,; leading
to a single 360° rotational rotation is calculated
from the unit vectors v; rot, @ = 1,2,3 using
and Algorithm [2| for obtaining unique inverse kine-
matics solutions. At each test nodes, all rota-
tional instances of the sampled rotational motion
are checked for singularity and link collision us-
ing approaches outlined in the previous subsection
(Sections and [£.2). After evaluating each test
node belonging to set Wiemp, and selecting singu-
larity and collision free test nodes, a set W, repre-
senting the union of all nodes corresponding to the
coaxial SPM’s Cartesian workspace, is obtained.
Algorithm [5] details the procedure for determining
set W.

5. Simulation Model and Experimental Pro-
totype

Numerical verification of the presented frame-
work is done via simulations and experiments us-
ing a coaxial SPM prototype with the follow-
ing geometrical parameters: a; = 45°, as = 90°,
B8 =90° and v =0°. These parameters were se-
lected such that they approximately match one of
the Pareto-optimal SPM design solutions (Design
ID I aq =47.2°, ap =91.7°, 5 =884° ~v=10°)
presented in [32], where a multiobjective design op-
timization problem was formulated to determine
the coaxial SPM configuration with minimum mass
and increased dexterity. The selected SPM param-
eters for the experimental manipulator prototype
will also allow to make future comparison (dynamic,
stiffness, etc.) with the SPM design prototype pro-
posed in [32]. Selection of the geometrical param-
eters with ay # o helps to avoid the second and
the third singularity types as mentioned earlier in
Section .11

A CAD model of the manipulator with these pa-
rameters was created in SolidWorks 3D modeling
software and is shown in Fig. [3a] For the link col-
lision detection purposes, this model was simpli-
fied by removing non-crucial design details such as
fixtures, interior holes, gear teeth, and afterwards
imported to CoppeliaSim (V-REP) robot simulator
(Fig. for link collision detection as detailed in
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Algorithm 5: Numerical computation of
the Cartesian workspace of a coaxial SPM

Input: la o, a1, (2, 67 Lo, Nis 1= 17273
Output: Set W

W« 0;

Wiemp < icosahedral grid generated using
[64];

for j «+ 1 to N do

singularity < false;

collision < false;

Set test node coordinates as n =
Wiemp(J);

Reconstruct v; 5, ¢ = 1,2, 3, following
C1-@3);

Generate rotational motion trajectory
0.,.; for a single rotation given v; ;,
i=1,2,3, using Algorithm

/* singularity detection */

for k< 1 to S do

Calculate Wi, gk and Viks 1= 1, 2,3,
given 6y,4;(k) using Algorithm

Calculate J given u; jr, W; j 1 and

Vijk, ¢ = 1,2, 3, following -
Calculate ¢(J) given J, following (18]
and (19);
if {(J) < {(J)min then
singularity < true
break

if singularity == true then
L break
/* link collision detection */
Send O¢rq; to robot simulator;
if collision handle == 1 then
collision < true
break
/* update the workspace */
if singularity == false and
collision == false then
L W<+ WUn

return W

Section 1.2] and [51]. MATLAB was used for mo-
tion control of the simulation model, collision data
recording, and singularity detection calculations.

In order to create the simulation model of the
coaxial SPM, the CAD model was saved in STL
format in SolidWorks and a single combined ma-
nipulator assembly was imported to CoppeliaSim,
where it was divided into several parts correspond-
ing to the manipulator’s links. The resulting model



Figure 3: Coaxial SPM: (a) CAD model, (b) simulation model, (¢) 3D-printed experimental prototype.

of the coaxial SPM consists of 8 shapes: the base, 3
distal links, 3 proximal links, and the mobile plat-
form. Actuators and gears were combined with the
base and do not play a role in the manipulator’s
actuation in this model. Actuation is done through
proximal links. In the last steps of the simulation
model preparation, it was assembled resembling the
closed-loop kinematic architecture of the manipula-
tor. There are 2 closed loops in the model, i.e. base
- prozimal link 8 - distal link 3 - mobile platform
- distal link 1 - prozimal link 1 - base and base -
proximal link 3 - distal link 3 - mobile platform -
distal link 2 - proximal link 2 - base. Additional
details about CoppeliaSim settings and its linkage
to MATLAB can be found in [51].

3D-printing rapid prototyping technology, i.e.
PLA plastic filament and Ultimaker Extended 2+
3D-printer, was used for manufacturing mechanical
elements of the coaxial SPM’s experimental proto-
type shown in (Fig. [3d). Actuation of the input
joints is performed by three ROBOTIS Dynamixel
XM540-W150 servomotors that are equidistantly
located on the manipulator’s base. The servomo-
tors are controlled via MATLAB using Dynamixel
SDK (Protocol 2.0) API.

Unlike the author’s previous SPM prototype uti-
lized in [37], the new coaxial SPM prototype uses
double helical gears (herringbone gears) with the
input joints instead of simple spur gears as before
for smoother motion and reduced backlash [65].
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6. Results and Discussion

6.1. Configuration Space Computation

The configuration space of the feasible input joint
positions was obtained by confirming that a given
input vector @ does not bring the coaxial SPM
to singularity /near-singularity or does not result
in link collisions as outlined in Algorithm [} The
3D grid of test nodes was limited by input val-
ues of 0° and 360° with a step dg = 5°, that re-
sulted in a total of 373,248 test nodes. Figure[d]
presents intermediate and final sets of the configu-
ration space at each stage of its computation. The
initial set was obtained, as shown in Fig. [{a] after
eliminating SPM configurations that result in link
surpass. It was found out that in one of the di-
rections, the set under study has an identical cross-
sectional profile shape, shown in Fig. [fa]as a shaded
circle in the 3D plot and separately underneath the
figure. This direction corresponds to the line con-
necting the test nodes 8 = [OO, 0°, O‘ﬂ T and 6 =
[3600, 360°, 3600] T, which is one of the 3D diago-
nals of the initial cubical 3D grid. This line also cor-
responds to the trajectory of the infinite rotational
motion of the mobile platform around z-axis, as
will be shown in Section [6.3.3] Afterwards, remain-
ing test nodes were tested for singularity with the
threshold conditioning index ((J)uin = 0.2. Sin-
gularity detection routine resulted in appearance
of several disconnected smaller subsets as shown in
Fig. [B] (cross-sectional view). These subsets be-
long to the different assembly modes of the coax-
ial SPM. Subsequently, the singularity-free config-
urations were tested for link collisions via simula-



tions in CoppeliaSim. The final set of the feasible
input joint positions V), i.e configuration space of
the coaxial SPM’s prototype, was computed and
is presented in Fig. The sets in Figs. [AD] and
demonstrate the same invariability of the cross-
sections on that particular diagonal.

Analysis of the computed set V of the feasi-
ble configurations shows that it stretches from

the node 68 = [0", 0°, OO]T to the node 8 =

[3600, 360°, 360°] T with the variability of each in-
put joint position not greater than 100° from the
straight line connecting those two nodes. From this
it follows that specifically for the coaxial SPM’s
prototype under study its actuators’ inputs can
not vary from each other by more than £100°,
otherwise some of the links will collide. It needs
to be mentioned that the obtained set V expends
infinitely in the positive and negative directions
following the [0°, 0°, 0°]" - [360°, 360°, 360°] "
line and having the same cross-sectional view pro-
file. This result confirms the fact that the coax-
ial SPM is capable of the infinite rotational mo-
tion, and trajectories leading to it are not bounded
on the diagonal direction, meaning that such tra-
jectories can go beyond the tested set bounded by
0; € [0°,360°],7 = 1,2,3 (example of this is shown
in Case 3 of the accompanying video).

6.2. Cartesian Workspace Computation

The Cartesian workspace was estimated by veri-
fying whether any rotational instance of the infinite
rotational motion of the coaxial SPM in this loca-
tion brings SPM to a singularity or near-singularity
or causes link collisions as outlined in Algorithm

An icosahedral grid of test nodes Wiemp was gen-
erated with g-level [ = 5 or factor = 32, mean-
ing that each triangle of the icosahedron is sub-
divided into 32 x 32 subtriangles, resulting in a
total of 10,242 test nodes around the whole unit
sphere. At each node, rotation of the unit vec-
tors v;, ¢+ = 1,2, 3, was sampled into 360 instances
(60 = 1°). At each instance, unique input joint
positions were calculated using Algorithm [2 This
way the input sequences 6i.,; providing a single
360° rotation of the SPM mobile platform at each
test node were generated. It was found out that
some input sequences contained values with imag-
inary parts, so the test nodes resulting in it were
excluded from the rest of the analysis as they corre-
spond to an unattainable region. Furthermore, test
nodes on the negative side of the unit sphere were
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also excluded from the analysis as it is expected
that the manipulator cannot operate in that region
safely (physical limitation).

The remaining test nodes were checked for sin-
gularity and benchmarked by the conditioning in-
dex ((J)min =0.2. In the case of the rotational
motion, the conditioning index ((J) is not a con-
stant value. It changes with each rotational in-
stance (please refer to Section [6.3]and Fig. [I0band
Fig. [104)). Figures [pal and [5b| illustrate test nodes
checked for singularity from different view points.
The test nodes here represent the vector direction
for n. In these figures, the red squares indicate the
test nodes at which at least one of the rotational
instances has the conditioning index ((J) below
C(I)min = 0.2. Figure [pd and present the com-
puted Cartesian workspaces (set W) of the coaxial
SPM’s normalized to a unit sphere. In these fig-
ures, the red squares indicate the test nodes with
link collisions during the rotation of the mobile plat-
form. The obtained data reveals that for the given
coaxial SPM’s prototype the lowest tilt of the mo-
bile platform with full rotation corresponds to 39°.
In order to obtain the Cartesian workspace corre-
sponding to the physical dimensions of the SPM’s
model, the obtained workspace has to be scaled by
the distance from the center of rotation to a desired
point on the SPM’s mobile platform.

6.3. Infinite Rotational Motion Generation

Three case studies of the infinite rotational mo-
tion generation of the coaxial SPM prototype at a
central, middle and edge regions of its Cartesian
workspace are presented to demonstrate the pro-
posed computational framework.

6.3.1. Case Study 1: Infinite Rotational Motion
in the FEdge Region of the SPM Cartesian
Workspace

A Cartesian workspace test node n =
[70.274, —0.555, 0.786]T is used in this example.
It corresponds to 38.22° tilt of the SPM mobile plat-
form as shown in Fig. [6a] where vector z represents
z-axis of the coordinate system and vector n repre-
sents normal vector of the mobile platform shown
from the center of rotation. The unit vectors v;,
i =1,2,3, corresponding to one of the possible ori-
entations of the mobile platform at this test node



(2)

(b)

(c)

Figure 4: Sets with cross-sectional views obtained at different stages of the computation process of the Coaxial SPM’s feasible
configuration space: (a) set of test nodes with no link surpass, (b) set of singularity free test nodes, (c) set of link collision free

test nodes.

are computed following —:
vy = [—0.89677 0.4427, O.OOOO]T7
vy = [0.1471, —0.8314, —0.5358]T7
Vs = [0.7495, 0.3887, 0.5358}T.

(24)

Once these unit vectors are obtained, the pro-
cedure is continued with Algorithm [3] Rotational
instances of the unit vectors (24)), v; rot, = 1,2,3,
are calculated by applying r a single 360° ro-
tation cycle with §, = 1°. The input joint positions
vector 0 is then calculated by applying Algorithm 2]
at each rotational instance. The generated input
joint trajectory 6., is shown in Fig. [7a] in the
form of a helix-shaped path inside the SPM fea-
sible configurations space, obtained in Section (.11
The generated trajectory almost reaches the side
edges of the feasible configuration space, indicating
that the coaxial SPM is operating near the edge of
its workspace. For consistency of all presented case
studies, all generated trajectories are shown within
the SPM feasible configuration space bounded by
input joint positions 0° and 360°.

Figure [8a] illustrates the sequence evolution of
the generated joint positions 6y, for the three in-
put joints of the SPM prototype, whereas Fig. [9a]
presents the input joint rates of position change,
calculated as 60; j41 - 0;;. Input joint rates of
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change are periodic and identical to each other
with 120° phase shifts between them. It means
that only one input joint position can be generated;
the remaining input joint positions are obtained by
adding 120° and 240° phase shifts. A similar peri-
odic behavior during the SPM rotational motion is
observed in the sample evolution of the condition-
ing index ((J) shown in Fig. [[0a] It implies that
during the infinite rotational motion of the coax-
ial SPM the conditioning index is not constant and
can go beyond the threshold value, which indicates
that the motion can be unfeasible.

The generated input joint trajectories were first
tested on the coaxial SPM model in CoppeliaSim
robot simulator resulting in the dynamic visual-
ization of the expected infinite rotation of the
manipulator as presented in Fig. [AT11] as SPM
model subsequent positions at six input joint tra-
jectory instances. Time evolution of unit vectors v,
i = 1,2, 3, characterizing the instantaneous orienta-
tion of the coaxial SPM model during the rotational
motion simulation, were compared with the numer-
ically computed reference vectors v; ,o, @ = 1,2, 3,
similarly to the procedure, presented in [51]. The
ideal matching of both the simulated and the pre-
computed desired rotational motion trajectories of
the coaxial SPM model orientation vectors verifies
the correctness and pointing accuracy of the pro-
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Figure 5: Sets with top views obtained at different stages of the computation process of the coaxial SPM’s Cartesian workspace:
(a) set of singularity-free and near-singular test nodes, (b) top view of the previous set, (c) set of link collision-free test nodes
and nodes with link collisions, (d) top view of the previous set.

posed numerical framework for generating input
joint trajectories, that are used as actuated joint
references for realizing infinite rotational motion of
the coaxial SPM’s top mobile platform around its
normal vector in a desired orientation.

The input trajectories were also applied on the
experimental prototype of the coaxial SPM as
shown in Fig. [A112]in the same format. The com-
plete rotation coaxial SPM prototype is presented
in the accompanying video demonstration. The
visual demonstration on the experimental proto-
type confirmed the overall correctness of the pro-
posed framework assuming an open loop control ap-
proach. Design of a closed loop orientation control
system for eliminating the effects of manipulator’s
dynamics, potential frictions in transmission gears
and joints and mechanical inaccuracies in the phys-
ical SPM prototype on its pointing accuracy is be-
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yond the scope of this work and is the subject of
the authors’ future research.

6.3.2. Case Study 2: Infinite Rotational Motion
in the Middle Region of the SPM Cartesian

Workspace
Consider the %est node n =
[0.165, —0.326, 0.931] on the Cartesian

workspace of the coaxial SPM prototype, cor-
responding to 21.43° tilt of the mobile platform
as shown in Fig. [6b] Similarly to Case Study 1,
the generated trajectory, input joint positions and
rates of change, conditioning index ((J) for this
case study are computed and presented in Figs.
[oB respectively. The snapshots of the
resulting rotation of the coaxial SPM simulator
model and experimental prototype are presented

in Fig. [A713] and Fig. [A:14] respectively.



(b)

Figure 6: Case studies of the infinite rotational motion generation of the coaxial SPM prototype: (a) case study 1 with
n = [—0.274, —0.555,0.7861]T, (b) case study 2 with n = [0.165, —0.326,0.931]7, (c) case study 3 with n = [0,0,1]7.
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Generated rotational motion joint trajectories of the coaxial SPM prototype:
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(a) case study 1 with

n = [—0.274, —0.555,0.786]7, (b) case study 2 with n = [0.165, —0.326,0.931]T, (c) case study 3 with n = [0,0,1]T.

6.3.3. Case Study 3: Infinite Rotational Motion in
the Central Region of the SPM Cartesian
Workspace

Consider the test node n = [0, 0, 1]T, corre-
sponding to 0° tilt of the mobile platform as shown
in Fig. Similarly to Case Study 1, the generated
trajectory, input joint positions and rates of change,
conditioning index ¢(J) for this case study are com-
puted and presented in Figs. respec-
tively. In this case, input joint rates of changes and
conditioning index ¢(J) are constant values, and the
input trajectory is a straight line connecting nodes
[0, 0, 0]" and [360, 360, 360]". The snapshots of
the resulting rotation of the coaxial SPM simulator
model and experimental prototype are presented in

Fig. [A.15] and Fig. [A16] respectively.
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7. Conclusion

This paper presented in detail a novel framework
for infinite rotational motion generation and kine-
matic analysis of a 3-RRR SPM with coaxial in-
put shafts. At first, a revised approach for ob-
taining unique kinematics solutions was presented,
based on which a novel approach for generating in-
finite rotational motion of the coaxial SPM top mo-
bile platform was formalized and verified via sim-
ulations and experimental tests of a coaxial SPM
model and its physical prototype, respectively, thus
demonstrating its practical applicability to design-
ing SPM based mechanisms with infinite rotational
motion capabilities.

The obtained numerical results revealed periodic
nature and similarities between the input joint rates
of change of the employed coaxial SPM model.
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Figure 8: Evolution of the input joint positions of the coaxial SPM prototype: (a) case study 1 with

n = [-0.274, —0.555,0.786]T, (b) case study 2 with n = [0.165, —0.326,0.931]7, (c) case study 3 with n = [0,0,1]7.
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Figure 9: Evolution of the input joint rates of change of the coaxial SPM prototype: (a) case study 1 with

n = [—0.274, —0.555,0.786], (b) case study 2 with n = [0.165, —0.326,0.931]7, (c) case study 3 with n = [0,0,1]7.
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Figure 10:

Evolution of the conditioning index ((J) of the coaxial SPM prototype:

(a) case study 1 with

n = [—-0.274, —0.555,0.786]T, (b) case study 2 with n = [0.165, —0.326,0.931]7, (c) case study 3 with n = [0,0,1]7.

Spatial analysis of the coaxial SPM model tak-
ing into account infinite rotational motion capa-
bility of the manipulator was performed resulting
in the numerically computed joint and Cartesian
workspaces of the manipulator excluding singular-
ity, near-singularity and link collision robot config-
urations. For the particular SPM prototype under
study, it was found that its maximum Cartesian
workspace is limited by 39° tilt.

In this work, only the visual verification of the
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proposed framework on the experimental coaxial
SPM’s prototype is presented assuming an open
loop control approach without correcting manipu-
lator’s dynamics, potential friction in transmission
gears and joints and mechanical inaccuracies, that
would affect the pointing accuracy of real-life sys-
tem. As a future work the presented coaxial SPM
infinite rotational motion generation and kinematic
analysis framework will be further utilized for de-
signing the manipulator’s real-time orientation con-



trol system with integrating 6-DOF orientation sen-
sors into the SPM mechanical prototype for a feed-
back control loop implementation similarly to au-
thor’s previous work [49]. As part of this work an
orientation accuracy analysis of the experimental
coaxial SPM prototype will be conducted.
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Appendix A. Examples of sampled rotational motions

(a) o =0° (b) o = 60° (c) o = 120° (d) o = 180° (e) o = 240° (f) o = 300°

Figure A.11: Rotational instances of the simulated coaxial SPM model about unit vector n = [—0.274, —0.555, O.786]T.

(a) o =0° (b) o = 60° (c) o =120° (d) o = 180° (e) o = 240° (f) o = 300°

Figure A.12: Rotational instances of the experimental coaxial SPM prototype about unit vector n = [—0.274, —0.555,0.786]T.
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(a) o =0° (b) o = 60° (c) o = 120° (d) o = 180° (e) o = 240° (f) o = 300°

Figure A.13: Rotational instances of the simulated coaxial SPM model about unit vector n = [0.165, —0.326,0.931]T.

(a) o =0° (b) o = 60° (c) o = 120° (d) o = 180° (e) o = 240° (f) o = 300°

Figure A.14: Rotational instances of the experimental coaxial SPM prototype about unit vector n = [0.165, —0.326,0.931]T".

(a) o =0° (b) o = 60° (c) o = 120° (d) o = 180° (e) o = 240° (f) o = 300°

Figure A.15: Rotational instances of the simulated coaxial SPM model about unit vector n = [0,0,1]7.

(a) o =0° (b) o = 60° (c) o =120° (d) o = 180° (e) o = 240° (f) ¢ = 300°

Figure A.16: Rotational instances of the experimental coaxial SPM prototype about unit vector n = [0, 0, 1]T.
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