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Safety-Aware Nonlinear Model Predictive Control
for Physical Human-Robot Interaction

Artemiy Oleinikov, Sanzhar Kusdavletov, Almas Shintemirov, and Matteo Rubagotti

Abstract—This letter proposes a nonlinear model predictive
control (NMPC) approach for real-time planning of point-to-
point motions of serial robot manipulators that share their
workspace with a human. The NMPC law solves a nonlinear pro-
gram online, based on a kinematic model, and guarantees safety
by constraining the robot speed within the time-varying bounds
determined by the speed-and-separation-monitoring (SSM) prin-
ciple. Closed-loop stability is proven in detail, and the perfor-
mance (in terms of productivity) of the proposed method is tested
against standard SSM schemes via experiments on a Kinova Gen3
robot.

Index Terms—Optimization and optimal control, human-aware
motion planning, physical human-robot interaction, nonlinear
model predictive control, speed and separation monitoring.

I. INTRODUCTION

HYSICAL human-robot interaction (pHRI) has recently

driven a large amount of research [l1]. Safety (i.e.,
“ensuring that only mild contusions may occur in worst-
case scenarios” [2]]) is at the basis of the first standard
for industrial applications of collaborative robots, namely
ISO/TS 15066 (“Robots and Robotic Devices - Industrial
Safety Requirements: Collaborative Industrial Robots™) [3]]. In
this framework, safety can be achieved by using lightweight
torque-controlled robots, and by adapting the robot speed
to the presence of the human. For example, when using
speed and separation monitoring (SSM), the robot reduces
its speed according to the distance with the human [4]]-[6]]. To
further enhance productivity, a current research line focuses
on improvements of the standard SSM framework: see, e.g.,
[7] (which considers the direction of the robot motion, in
addition to the separation distance, to determine the robot
speed), and the references in it. Alternatively, other researchers
are focusing on real-time motion planning methods for robot
manipulators in the presence of humans (see, e.g., [1]] and the
references therein).

Thanks to faster microprocessors, improved optimization
solvers, and ad-hoc toolboxes such as ACADO [8|], model
predictive control (MPC, see, e.g., [9]) has become a viable
solution for the control of manipulators [[10]-[15]. Regarding
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Fig. 1. Screenshot of the video provided as supplementary material, in which
one can see the real robot (with its motion reproduced in the simulation) and
the simulated human for our case study.

MPC used for motion planning in the presence of humans,
the approaches proposed in [16], [17] were validated in
simulation, while experimental results were obtained in [[18]],
[19], focusing, respectively, on an MPC approach for human
avoidance based on mixed-integer programming and on a
nonlinear MPC (NMPC) scheme to coordinate human and
robot motions during pick-and-place operations.

In this paper, we propose a real-time motion planning
algorithm for pHRI based on NMPC. A serial manipulator
has to independently complete a sequence of point-to-point
motions, while a human carries out different tasks near the
robot, with no a-priori assumptions on his/her motion. The
proposed algorithm keeps replanning the robot motion based
on the current human pose (measured via motion capture). It
modulates the robot speed depending on the relative distance
with the human, by satisfying the SSM specifications defined
in [4]. The following two properties are guaranteed under
suitable assumptions detailed in the remainder of the paper.
First, the stability of the closed-loop system with respect to the
current reference configuration is guaranteed. Second, thanks
to the SSM-based speed modulation, the robot will stop before
a contact occurs with the human.

This type of approach to safe NMPC based on SSM specifi-
cations, including theoretical proofs, constitutes a novelty, and
is the first contribution of this paper. An additional contribution
is in the experimental implementation of the proposed NMPC
method, and of different SSM algorithms described in [4],
on a Kinova Gen3 manipulator (see Fig. [I): the comparison
shows that our NMPC algorithm for motion planning provides
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higher productivity than the SSM schemes in [4], at the same
time ensuring safety. In this work, by safety we mean that
the SSM velocity bounds are enforced. One should remember,
though, that in specific industrial applications an additional
risk assessment procedure has to be carried out to account
for any possible hazards. The human motion is simulated
by replicating the recorded motions in industry-like activities
described in [20]].

Notation: The positive semi-definiteness and positive defi-
niteness of matrix M, are denoted as M > 0 and M > 0,
respectively. Given g € R”, | g|| indicates its Euclidean norm.
Given g € R" and M € R"*", | g||%; £ g’ Mg, where ’ is
the transposition operator. A sequence of integers from v4 to
vy included is indicated as N, .}, e.g., N g = {1,2,3,4}.

II. KINEMATICS, DYNAMICS, AND CONSTRAINTS

The end effector pose of the considered manipulator is re-
ferred to as y = [p’ ¢’]/ € RS, in which p = (2, yp, 2) €
R3 is the end-effector position in the fixed reference frame
O —wy~z centered at the robot base, while ¢ = (X,Y, Z) € R?
is the end-effector orientation in Euler angles. We consider the
problem of moving the end effector from an initial pose y,
to a final pose y,. The preliminary building blocks of the
proposed control scheme are analyzed in the following.

1) Robot and human space occupancy: To avoid collisions
with the human, a number n, of test points are defined on
the robot frame: their positions p, ; € R3,ieN, £ Ni1,n,]
in the O — xyz reference frame changes as the manipulator
modifies its configuration. The mentioned test points are the
centers of spheres S, ;, ¢ € N,., with radii respectively equal to
R, ;. It is assumed that the union of all spheres S, ;, i € N,
includes the robot frame. On the other hand, a number n;, of
spheres Sp, j, 7 € Nj, 2N [1,n,]> With radii respectively equal
to Ry, j, are defined such that their union covers the volume
occupied by the human, plus a tolerance that prevents the robot
from getting too close, especially to sensitive areas such as the
face. The positions of their centers Phj € R3, 7 € Ny, in the
O — zyz reference frame also evolves as the human moves.
The distance from the ¢-th sphere of the robot to the human
(including the above-mentioned tolerances and based on the
described union-of-spheres approximation) is defined as

dip, = min {d;; — (R, + Rn )}, (1)
JENy

where d;; = || P..;—Pp, ;| with a negative d;;, indicating colli-
sion. The human-robot distance using the same approximation
is thus defined as
drh = min dih- (2)
€N,

2) Robot kinematics and dynamics: The proposed control
scheme acts in the manipulator joint space. The initial and
final configurations of the robot end-effector are translated into
corresponding joint positions 8 € R™ as 8y = kinv(Yg),
0; = kinv(y;), where kiny(-) : R® — R"™ represents
the robot inverse kinematics function. In general, ki, (-) is
not uniquely defined, however in this work we will assume
that the initial and final values 8y and @ are constant and
assigned offline, during task definition. On the other hand, to

determine the positions of the test points during task execution,
one has to use forward kinematics: in particular, we have
D; = ktwai(0), where i € N,., while kpyqi(+) : R — R3 is
the forward kinematics function for the position of the i-th test
point. Differential kinematics is needed to obtain the Cartesian
velocity vectors of the test points during task execution, as
v; = kaigi(0,w), where w € R™ is the vector of joint
speeds, and kaier i (+) : R™ — R? is the differential kinematics
function for the the i-th test point.

The robot system dynamics is defined in the joint space, as

0=w (3)

where the joint speeds in w are assumed here as control vari-
ables (i.e., a purely kinematic model is used). The equation is
to be intended component-wise, i.e., HZ =w,, fori e N[Lne]-
The choice of equation (3) has two reasons: first, joint torques
are not accessible in most commercial robots, but one can
impose reference speeds for each joint which will be tracked
by inner control loops; second, the use of such a simple model
will allow to reduce the computational burden of the NMPC
controller compared to a full nonlinear dynamic model.

To make notation compact, the information on robot test
point positions and velocities, and radii of the corresponding
spheres, is referred to as R, while the overall information
on position of test points on the human, and radii of the
corresponding spheres, is referred to as H.

3) Limits on joint angles and speeds: When executing the
robot motion, the link speeds must remain within certain
bounds, to avoid damaging the manipulator. Also, link po-
sitions are typically limited to avoid self-collisions, according
to the robot specifications. The general set of constraints on
joint positions can be written as 8 € © (implicitly assuming
that 8y € O and 8¢ € O), while the overall set of constraints
on joint speeds is w € (2, where O, C R™ are closed sets.

4) Avoidance of fixed obstacles: Fixed obstacles (e.g., a
wall or a table) can be present in the robot workspace. To
avoid them, given the volume occupied by them (denoted as
0), we impose that, at all time instants,

IR) 245 | Sripno=0. (4)

1€N,.

If the obstacle is a half-space (e.g., a wall or a ceiling), then
can be imposed just requesting that each p, ;, 7 € N,., has
a distance from the obstacle surface greater or equal than R, ;.
In case of more complex shapes, one can define a number of
spheres that cover the whole obstacle volume, and impose that
the distance between each p,.;, i € N,, and each sphere on
the obstacle is greater or equal than R, ;.

III. ROBOT SPEED MODULATION

This section provides an overview of the SSM algorithms
described in [4], together with the last type of constraint that
will be enforced in the NMPC problem, in addition to those
already mentioned in Section

Assumption 1: The speed of each test point p, ; € R3,
7 € Ny, on the human never exceeds vy, i.e., the maximum
human speed according to safety standards. ]
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The SSM algorithms here considered are based on the
adaptation of [4, Eq. 14] to our framework, which, in turn,
implements a specific version of the ISO/TS 15066 SSM
criterion detailed in [4, Eq. 2]). This condition ensures that,
under the conservative assumption that robot and human
are moving towards each other (with the human moving at
his/her maximum speed), the robot can stop before a collision
happens. Precisely, each v; £ ||v;]|, i € N,, has to satisfy the
following condition point-wise in time:

din + dir < dip, + €5, @)

where d;, is defined in (T]), while d;;, and d;, are, respectively,
the maximum distances that human and S, ; can cover before
one can achieve v; = 0. Also, ¢, is the maximum error
with which the positions of the test points of the human
are detected by the employed motion capture system. We
define d;;, 2 v, (TdT + ;3, where Ty, £ Ts + T, is the
time interval necessary for detection of the human position
(assumed equal to the sampling interval T}) and consequent
reaction (depending on hardware and used algorithm, and
referred to as T,.), while g—r is the time needed to bring S, ; to
a controlled stop (with @, being the maximum allowable robot
deceleration, equal for all sp?eres and assumed known). Also,
we define d;, £ v; Ty, + 32—, with v; Ty, being the distance

travelled by S, ; while the human position is detected, and
representing the distance needed to stop S, ;.

One can solve @), which is quadratic in v;, as an equation
and obtain the maximum allowable speed of S, ;, namely ;,
given the current value of d;,, for all ¢ € N,.. Given a nominal
robot trajectory, defined in the absence of the human, the
corresponding vector of joint speeds w is scaled multiplying it
by ¢ £ min;en, U;/v; (v; being here the robot test point speed
for the nominal trajectory), whenever ¢ < 1. This way, the
robot will still follow the path given by the nominal trajectory
in the joint space, only with reduced speed. This algorithm
has been implemented in our case study, and is referred to in
the remainder of the paper as continuous SSM (CSSM).

In industrial practice, the boundary v; is not determined for
each sphere, but as a single value v, for the whole robot,
obtained from (3) in which d.p, defined in (@), is substituted
to d;p: this leads to a slightly more conservative scaling of the
robot speed. In addition, the robot speed is not continuously
modulated, but is changed based on one or more threshold
values of d,.: this is clearly explained in the bimodal SSM
(BSSM) and trimodal SSM (TSSM) schemes described in [4],
also implemented in our case study.

In our NMPC scheme, we aim at implementing a criterion
similar to CSSM, but while being able to change the robot
trajectory. The following set of constraints is imposed:

Vi
2a,

0?2 < a? (dfj — (Ryi+ Rij + d)2) V(i §) € N, xNy, (6)

where a, d € R>q are tuning parameters. Condition () aims
at substituting (3), as it would not be possible to directly
implement (3)) in our NMPC problem. The main reason is that
v; always has to appear squared, as the square root function
(necessary to directly obtain v;) is not differentiable at the

origin, and thus would cause problems to the optimization
solver.

Remark 1: Tuning o and d so that (6) implies (§) for all
d;p, (which can be verified graphically, as will be done for
our case study) ensures that the NMPC algorithm implicitly
guarantees the satisfaction of the SSM limits. (|

2

By defining, for notation convenience, f;;(R,H) £ v —

o? (dfj — (Rri + Rnj + &)2) we can rewrite equation ()
as [i;(R,H) < 0, for all (i,j) € N, x Np, or, more
compactly, as f(R,H) < 0, where f(R,H) € RNVNn js a
vector containing all the scalar functions f;;(R,H).

IV. THE NMPC MOTION PLANNING SCHEME

The proposed control scheme is made of two cascaded
NMPC controllers. In Section we will consider only
the highest-level controller, namely the long-term NMPC (L-
NMPC) controller, which has the task of planning the robot
motion. Then, Section will introduce the presence of the
short-term NMPC (S-NMPC) controller, mainly aimed at a fast
adaptation of the robot speed depending on the human motion.
As apparent from Section a high value of Ty, would
make the robot velocity modulation profile more conservative,
thus hindering robot productivity. In order to keep Ty, low,
one needs to decrease the sampling interval (which coincides
with the discretization interval of the NMPC controller) as
much as possible; however, the discretization interval cannot
be decreased too much, or else one would not be able to
plan the robot trajectory until the goal configuration without
exceeding the available computation time. This is the reason
why in this work we propose the above-described scheme with
two different NMPC controllers.

A. Long-term NMPC controller

The robot state 8. = 0(t.) is acquired at the current time
instant ¢. together with the positions of the test points py, ;,
7 € Np, on the human. The so-called prediction horizon
N; € Ny (the subscript ¢ stands for “long-term”) defines
how many integer multiples of the sampling interval T , are
considered for predicting and optimizing the system dynamics
for L-NMPC. The exact discretization of dynamics (), with
the given sampling interval for a sample-and-hold realization
of the input signal, is given by

0(k+1)=0(k) +Ts w0 (K), @)

with £ € N being the discrete-time index, and in which w(x)
and 6(k) represent the vectors of joint speeds w and joint
angles @ at time ¢t = k75 o. The NMPC controller will explore
different realizations of the discrete-time control sequence

(Dgé {Wz(O),wg(l)“..,OJg(Ng—1)}, ()

where wy (k) and ,(k) (with k € N> being the discrete-time
index in the prediction) represent the predictions of w(k) and
0(k), respectively, at time t.+kTs ¢ (i.e., k = 0 corresponds to
time instant ¢, for the predicted sequences). The corresponding
sequence of states, obtained applying dynamics to the
predicted state values, is referred to as

0= {00(0),00(1),...,00(Ne)} ©)
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For each time instant of the predicted input/state sequences,
we introduce the scalar variable ¢;(k), defined as

_ 38n(Re(k)H0)?
5g(Re(k))?

po(k) £ e (10)

where € Rsg is a design parameter, d5 (R¢(k), Ho) is
the distance of the robot end effector from the currently
measured location of a single sphere Sj, ; on the human, while
dg (Re(k)) is the distance of the robot end effector from the
end-effector position corresponding to the goal configuration
y;- In (10), Ho £ 7,(0) represents the information on the
human at time t.. Instead, R(k) represents the expressions
of the predicted overall information R on the robot at time k,
which can be calculated given 0,(k) and wy(k).

The controller will determine the optimal sequences wj and
6, (containing the corresponding elements w} (k) and 8} (k))
by minimizing the following quadratic cost function:

Ne—1
o (@0,00,Ho) 2 1106(k) = 051G + lwe(k) |7 + 77 ()

k=0 (1
where Q@ = Q' € R™*™ and R = R’ € R"*™ satisfy
Q > 0, and R > 0, while v € R+ (. The cost function aims at
steering the regulation error 8, — 0 to zero, while avoiding
using high joint speeds w; when not necessary, in order to
obtain a smooth robot motion. Also, in order to maintain ¢7 (k)
low, the robot end effector should stay far from the human,
and close to the goal point: this term is introduced to provide
further incentive for the robot to move away from the human
and find alternative trajectories, rather than simply slow down
and stop as in a standard SSM scheme.

The following finite-horizon optimal control problem
(FHOCP) determines @; and @, for L-NMPC:

(@7.0;) =arg min Jy(we, 6r. Ho) (12a)
we,0e
subj. to 0@(0) =0., eg(Ng) = Bf (12b)

Op(k + 1) = eg(k) + TS,@we(k)a ke N[O,Ne—l]

(12¢)
we(k) € Q, k€ Ny n,—q (12d)
Bg(k}) €0, ke N[O,N({] (12e)
I('Re(k)) = (Z), ke N[O,Ne]7 (12f)
f(Re(k),Ho) <0, k € Ny n,- (12g)

Condition (I2b) defines the system state at the beginning of the
prediction horizon (corresponding with the currently measured
joint positions), and imposes that the robot configuration at
the end of the prediction horizon is equal to the goal config-
uration 6 ¢. Equation (12c) requires that the predicted system
evolution happens according to the discrete-time model (7).
The inequality constraints (I2d)-(I2g) impose, respectively,
joint speed constraints, joint position constraints, avoidance
of fixed obstacles, and velocity modulation constraints. The
use of 7(0) in the latter implies that the predictions made by
the NMPC controller are based on the simplifying assumption
that the human maintains his/her current pose. However, at
the next sampling interval, a new realization of Hy will be

obtained from sensors, to account for the change of posture
of the human within the sampling interval.

After the solution of is calculated at time kT ¢, only
the first control move wj(0) is applied to the discrete-time
system (7), as w(k) = wj(0); after acquiring the new state
measurement and the new information on the human at time
(k + 1)Ts ¢, the FHOCP is solved again, according to the so-
called receding-horizon principle [21]].

Remark 2: When implementing the control law, condition
f(R4(0),Ho) <0 is checked before solving the FHOCP
at each sampling instant: if true, the FHOCP is solved; if false,
then w(k) = O is set without solving the FHOCP, and the
FHOCP is solved again as soon as (I2g) becomes true. The
imposition of w(k) = 0 is also carried out in case no feasible
solution of the FHOCP is found. ]

Theorem 1: Assume that the control law for the considered
human-robot system is defined as in Remark [2} and applied
directly to the robot dynamics described in (7). Also, assume
that a solution of (I2) is available at time kT, (with any
k € N>g), and that the human does not change his/her position
for t > KkTs,. Then, (i) the FHOCP (12) remains feasible
for all sampling instants <7, £ € Nx>q, and (ii) the goal
configuration 8¢ is an asymptotically stable equilibrium point
for the closed-loop discrete-time system given by with
w(k) = w;(0) defined as in Remark

Proof: Given the optimal control sequence wj defined at
time «T ¢, a feasible (and, in general, sub-optimal) control
sequence at time (k + 1)Ts ¢ is given by

“(k+1 keN _
d—)e(k)A{wé( + )’ € [0,N;—2]

13
0 k=N, —1. (13)

Indeed, one can easily verify that, applying zero joint speeds
at k = Ny — 1, all the constraints in the FHOCP @]), shifting
time forward of one discrete time instant, are satisfied. As
a feasible solution exists, a new optimal input sequence will
exist at time « + 1, which proves (i). In order to prove (ii),
we first refer to the optimal cost function (i.e., the solution of
the FHOCP (12)) as Jy(w},0;,Ho). As the latter is uniquely
determined as a function of the robot state and H is assumed
to remain known and constant, we will refer to it in short
as V(0) =& Jy(w;,0;,Ho), and consider it as a Lyapunov
function candidate for the considered closed-loop system. By
construction, V(8) > 0 for all @ # 6, and V(0) = 0. Also,
a possible value of the cost function associated to the control
sequence in (T3) at the discrete time instant x + 1, given the
optimal sequence at time r, can be determined by construction
as V ((0(k + 1)|r) = V(8(r))—[10(r) =0 — lwe () —
vp2(k) < V(0(k)) for O(r) # . As the optimal value of
the cost function at the discrete-time instant x + 1 will surely
satisfy V(8(k + 1)) < V ((8(k + 1)|x), then we conclude
that V(0(k+1)) < V(0(k)) for (k) # 0. Thus, V(0) is a
Lyapunov function, which proves that 8¢ is an asymptotically
stable equilibrium point for the closed-loop system. This result
follows from the general approach known as zero terminal
constraint [21]], which is applicable thanks to the imposition
of constraint 8,(N;) = 6;. [ |

Remark 3: The FHOCP @]) guarantees that, once a feasi-
ble motion of the system has been determined, it is possible
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to guarantee that the robot configuration will converge to its
goal, assuming that the human will not move. If the human
moves without assumptions on his/her future trajectory, it is
not possible to guarantee convergence: imagine the case in
which the operator keeps moving to purposely block the robot
motion. Thus, our aim is not to avoid the human and reach the
goal point in any situation, but to guarantee that the goal point
is reached, at least when the human stops at a configuration
for which a feasible robot trajectory exists. (]

Remark 4: Safety is ensured by the velocity modulation
constraints imposed in the FHOCP (I2)) (see Remark [T)), which
keep being enforced thanks to the recursive feasibility property
proven in Theorem O

B. Short-term NMPC controller

S-NMPC aims at tracking the trajectory already predicted
by L-NMPC, but over a much shorter prediction time interval,
and with a sampling interval T, (where the subscript o
stands for ‘“short-term”) shorter than 7, so as to obtain
Ty = Tss + T, which leads to the imposition of less
restrictive speed modulation constraints as compared to using
L-NMPC alone. S-NMPC generates a new optimal sequence
of link velocities and corresponding sequence of link positions,
namely @ and @, with the mentioned sampling interval T} ,:
these are the reference speeds that will be sent to the inner
velocity control loop of each link.

T, is defined to be a submultiple of T ,, according to
Tso = NpTso, with Ny, € Nsg. The state prediction
0_5 is used as a reference for S-NMPC, after having been
resampled via linear interpolation. As the system dynamics
is given by one integrator for each joint angle, the resampled
time evolution of the robot joint angles exactly corresponds to
the application of constant joint speeds during each sampling
interval T o.

The S-NMPC solution is obtained by solving a FHOCP with
the same structure as , with the difference that it solves
a tracking problem (tracking the time-varying resampled evo-
lution of 5;), with a discretization interval of T , coinciding
with the actual sampling interval, a prediction horizon of N,
discretization intervals, and no terminal constraint. The thread
that executes S-NMPC runs in parallel with the one executing
L-NMPC, and the reference for S-NMPC is updated as soon
as a new L-NMPC solution is available.

Remark 5: As both L-NMPC and S-NMPC are based on
kinematic models, we assume that the joint speed reference
generated by S-NMPC is passed to a low-level embedded
robot controller that, similarly to [22], guarantees limits on
joint torques, accelerations, speeds and displacements. This is
done in order to safeguard the robot against effects such as
torque overload and hitting of mechanical joint limits. The
overall NMPC control scheme, including the robot controller,
is shown in Fig. O

Remark 6: In terms of stability of the overall system,
Theorem 2] would remain valid in case both S-NMPC and the
low-level control loops perfectly track their references. This
is never exactly true; however, it is reasonable to expect that
a solution of the FHOCP (12) will be found if after T , (i)

0 0; o* &
) t T I R I |
- %
time time time 4
Final | [ Long-term | Short-term 'Se‘rlél‘]']na?oll\bx:lllifcrl
figurati NMPC * NMPC L N
configuration ‘ Bf W | 0[ ‘—J w: joint control loops
6

Tse

Fig. 2. Block diagram of the cascaded NMPC scheme. Both L-NMPC
and S-NMPC also receive human motion capture information, which is not
represented here for the sake of simplicity.

the joint positions do not differ greatly from their prediction
made by L-NMPC, and (ii) the human does not completely
change his/her position. An alternative to our approach would
have been the use of robust NMPC to account for imperfect
tracking, which would pose several additional challenges and
is out of the scope of this paper. (|

V. CASE STUDY

Our case study applies the described NMPC scheme to a
Kinova Gen3 robot, a torque-controlled collaborative manip-
ulator with 7 degrees of freedom (i.e., ng = 7). The robot
motion simulates a sequence of pick-and-place movements,
as the reference for the robot configuration changes from
6o = [0.37 —0.84 031 —0.58 —0.26 —0.56 0.82]
to @y =[—-2.55 —0.94 0.31 —0.88 —0.26 —1.36 0.82)
and back, as soon as the robot reaches its currently set goal
point. The forward, inverse and differential kinematics, needed
to convert variables from the O — xyz reference frame into the
joint space and vice-versa, are formulated via homogeneous
transformation matrices using the Denavit-Hartenberg param-
eters provided by the manufacturer. As the robot executes its
task while being placed on a table with height of 1.2 m from
the ground, the human is simulated in the same workspace
by replicating the motion of one of the subjects in [ZOﬂ The
human motion in [20] was recorded using both inertial (Xsens
MVN Link system) and optical (Qualisys system with 12 Oqus
cameras) motion capture systems, while the human carried out
industry-like activities, such as executing a screwing task at
three different heights, untying a knot, carrying loads of 5 kg
and 10 kg and place them on shelves.

We start defining the parameters described in Section
To account for the robot space occupancy, a total of n, =7
spheres S, ; are located on the robot kinematic chain. The
spheres have radii R, ; = 0.12mfori =1,2,3,4, R, ; = 0.06
m for ¢ = 5,6, and R, 7 = 0.1 m. Regarding avoidance of
fixed obstacles, condition (@) is defined by imposing that all
spheres S,.; are above the height of the table: in practice, this is
achieved imposing that the center p,.; of each sphere is above
the table level of a quantity equal to I?,.,;. This constraint is
imposed because, assuming that the human’s legs will never
be lifted above the level of the table, it makes it possible not
to directly impose the avoidance of the human’s legs, so as to
reduce the number of constraints for the NMPC controllers.

Uhttps://zenodo.org/record/3254403# X8HcD2gzZPY
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Fig. 3. Velocity modulation profiles for the four controllers considered in
the case study.

As a consequence, n;, = 14 spheres Sy ; are located on the
human body, excluding legs. The positions of their centers
are obtainable for all human poses from the motion capture
data described in [20]], and the spheres have radii R; ; =
0.25 m for j = 1,13, Rp; = 0.3 m for j = 2,14, R, ; =
0.2 m for j = 3,4,5,6,7,8, R ; = 0.15 m for j = 9,10,
and Ry ; = 0.18 m for j = 11,12. The chosen values of
n, and ny, and the consequent values of sphere centers and
radii, were determined experimentally in order to maintain the
computational complexity of the FHOCPs within reasonable
bounds, at the same time avoiding an excessively conservative
coverage of human and robot frames. In terms of limits on joint
angles and speeds, it is imposed that |f2| < 2.2497 rad, |04] <
2.5795 rad, and |6s] < 2.0996 rad to avoid self-collisions,
while |w;| < 1.2 rad/s for all ¢ € n,..

We now move to the terms defined in Section The value
of v = 2 m/s is set as the maximum human velocity accord-
ing to the ISO 13855 standard [4, Sec. V], while the sensor
position error for the motion capture system is estimated as
€5 = 1072 m. Also, based on the robot characteristics, we set
a, = 5 m/s?. Given an S-NMPC sampling time T , = 50 ms,
and setting T, = T , to account for the worst-case reaction
scenario, we obtain T = 0.1 s. To ensure that (6) implies
(@) for all d;p,, we set a = 0.89 and d = 0.3 m, which ensures
that the NMPC velocity modulation profile never exceeds the
corresponding CSSM curve (Fig. [3).

We are now ready to describe the implementation details
of the NMPC controllers (Section [[V). L-NMPC is defined
with Ts , = 500 ms and a prediction horizon N, = 10,
leading to a total prediction time interval of 5 s. The 5 s
time interval makes it possible, in our case study, to plan the
robot motion until € is reached, so as to satisfy constraint
0/(N;) = 0 in (I2b). On the other hand, T, , = 500 ms is
chosen to allow for the computation of the FHOCP solution
within the sampling interval. The value of 3 in is set
to 8 = 3, while the FHOCP cost function in is defined
by Q = diag{20,20,15,15,10,10,10} and v = 500, while
R is an identity matrix. These weights are determined by
trial-and-error tuning. In particular, the values of S and ~
influence how far the robot will tend to pass from the human:
if too close, the robot might often have to stop; if too far, the
time to reach @ tends to increase. The FHOCP constraints
in (I2) are defined using the above-described obstacle and
speed modulation parameters. Regarding S-NMPC, we set

T = 50 ms (already mentioned above) and a prediction
horizon N, = 10, leading to a total prediction time interval
of 500 ms. In contrast to L-NMPC, there is no need to reach
any goal configuration by the end of the prediction horizon,
so T, » = 50 ms is set to be able to solve the corresponding
FHOCP within the sampling interval, while the prediction
horizon is determined by trial and error tuning. The inequality
constraints imposed in the FHOCP for S-NMPC are the same
as in L-NMPC. Both FHOCP are cast into nonlinear programs,
after discretizing the system dynamics with a time interval
equal to the sampling time, via a multiple-shooting approach
using the ACADO Toolkit [8]]. The solutions are based on
sequential quadratic programming (SQP), with a number of
SQP steps equal to 10 and 20, respectively, for L-NMPC and
S-NMPC. A Gauss-Newton approximation of the Hessian of
the Lagrangian is employed in the SQP steps, while qpOASES
[23[] is used to solve, in condensed form, each quadratic
program.

To compare the proposed approach with state-of-the-art
methods, the three SSM schemes described in Section are
also implemented. The first scheme (BSSM) simply allows
the robot speed v, to take any values as long as d,;, > cf,,h,
where drh = 0.954 is a constant threshold, and stops the
robot whenever d,, < cfrh (see Fig. . The value of cfrh
is determined as the distance corresponding, on the CSSM
curve, to the speed ¥ = 1.2 m/s. In turn, the latter is an
upper bound to the values of v;, ¢ € N,, obtained when
following the nominal trajectory without human presence: this
ensures that the value of ©,. is never reached by any robot test
points, thus allowing the robot to follow the nominal trajectory
with full speed. The second scheme (TSSM) still imposes the
same conditions on robot speed as BSSM, but, additionally,
imposes a maximum value of v, equal to 0.5 m/s whenever
d-p, €10.5, d}h] (also shown in Fig. . Both of these methods
were implemented in [4]] for a different case study. Finally, the
third scheme (CSSM) operates as described in Section and
its velocity modulation curve constitutes an upper bound for
all the other curves. All three SSM schemes require a nominal
trajectory, which, in order to provide a fair comparison with
NMPC, is defined as the robot trajectory with the proposed
NMPC scheme, without human. When the human approaches
the robot, the same path in the joint space, corresponding to
the nominal trajectory, is followed with reduced speed.

All controllers are implemented on a desktop computer
with i19-7900X CPU and 16 GB RAM, running Robot Op-
erating System (ROS). The NMPC controllers, obtained via
C-language code generation via ACADO, are implemented
as separate C++ nodes in ROS. Every 50 ms, joint velocity
commands are sent from the computer to the internal motion
control system of the Kinova Gen3 robot via ROS-Kortex
drivelﬂ The current joint positions and velocities of the robot
are read via the ROS-Kortex interface, also every 50 ms.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

The four considered methods are applied to the real Kinova
Gen3 robot avoiding the above-mentioned simulated human.

Zhttps://github.com/Kinovarobotics/ros_kortex
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Safety is guaranteed by the imposed velocity modulation
constraints for all methods, and these constraints are always
satisfied in the experiments. Therefore, what differentiates the
four methods is robot productivity, defined in [4] as

»
Pp=—
TR

where 7 is the ideal task execution time (i.e., the time that the
robot would employ to move from 6, to 8y and back when no
human is present), and 7x is the average execution time (i.e.,
the average time that the robot employs for the whole cycle
consisting of moving from @y to 8 y and back) when the human
is moving in the robot workspace. To evaluate the productivity
of the four methods over a time interval long enough to present
a significant number of situations, the overall human motion,
which has a duration of 85 s, is replicated multiple times with
various time delays at the beginning of the motion itself, so
as to obtain many different combinations of human and robot
motion. The resulting total duration of the experiments for
each method is equal to 28 min and 20 s.

(14)

TABLE I
COMPARISON OF THE VALUES OF 7, T, AND Pr FOR THE
EXPERIMENTAL RESULTS.

No pauses 4 sec. pauses
F() TrRG) Pr%) | () 7RG  Pr(%)
NMPC  9.53 14.57 65.41 9.53 16.40  58.78%
CSSM 9.76 16.17 60.36 | 9.76 19.11  51.07%
TSSM 9.77 16.59 58.89 | 9.77 20.61  47.40%
BSSM 9.77 18.24 53.56 | 9.77 2217  44.07%
8 sec. pauses 12 sec. pauses
() TR Pr%) | 7() TrR() Pr(%)
NMPC  9.53 18.60 51.24 | 9.53 17.96  53.06%
CSSM 9.76 22.66 43.07 | 9.76 2582 37.80%
TSSM 9.77 24.55 39.80 | 9.77 27.81 35.13%
BSSM 9.77 26.17 3733 | 9.77 30.16  32.39%

The result can be seen in the upper-left part of Table[l] The
value of 7 is very similar for all four methods, and slightly
lower for NMPC: this is due to the fact that NMPC directly
determines joint speeds, while the other methods track the
time evolution of joint positions determined by NMPC for the
case without human. To compensate for this slight advantage
of NMPC, the value of Pr for each method is calculated
dividing by the corresponding value of 7. As expected, the
productivity increases from BSSM up to NMPC, with the
latter having a productivity increment relative to CSSM of
8.37%. Still, one could argue that a motion (such as the
one in the data set) in which the human never stops would
not represent the ideal case for showing the full potential
of NMPC. The least favourable case for SSM is when the
operator maintains a position that obstructs the robot motion
for some time: in such a case, NMPC can replan the robot
trajectory, while the SSM schemes just have to wait. In order
to show this concept, pauses of 4 s, 8 s, and 12 s, respectively,
have been added whenever the operator executes one of the
tasks listed in Section |V] thus obtaining a total duration of the
motion sequence of 33 min 20 s, 38 min 40 s, and 44 min,
respectively. The results, analogous to those of the case with no
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Fig. 4. Linear velocity of the robot under two-level MPC controller for the
7 test points on the robot.

pauses in the human motion, are also shown in Table [} even
if the overall productivity typically decreases as the human
occupies the robot workspace for longer, the advantage of
NMPC compared to the SSM schemes keeps increasing, with a
relative advantage on CSSM of 15.10%, 18.97%, and 40.37%,
respectively, for the 4 s, 8 s, and 12 s cases.

The simple integrator model (3) that is also implemented
(after time discretization) in NMPC implicitly assumes that
reference speed and actual speed of the joints coincide. This
might not be accurate, especially when the reference speeds
undergo a sudden change. However, as the actual speed of
each test point (simply indicated in Fig. [4| as v;) is in practice
always lower than its ideal value from S-NMPC (indicated as
0; in Fig. f), the fact that all o; never exceed the boundary
given by the speed modulation constraint implies that also the
values of v; are within safety bounds. To show this concept,
the time evolution of v; and v;, together with the upper bound
©;, are shown in Fig. [ for all seven test points, for one minute
of experimental results.

For the same time interval, the tracking of the reference
robot position is shown in Fig. [5|in terms of end effector pose
(position p = (xp,Yp, zp) and orientation ¢ = (X,Y, 2)).
The robot reaches the prescribed goal configurations at every
cycle. However, it is difficult to relate these graphs with
the corresponding human motion. For this reason, a video is
provided as supplementary material: in this video (see Fig. [I)),
we show a 3D simulation in Gazebo of the Kinova Gen3
manipulator (which exactly replicates the motion measured
from the experimental setup) and of the human for a subset
of the cases summarized in Table[l] and for all four methods.
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Fig. 5. Cartesian coordinates of end-effector position for robot controlled
by two-level MPC.

Among other factors, the performance of the described
control laws depends on Ty,., which in turn depends on the
sampling time. In the described results, the SSM schemes were
implemented with the same sampling time of S-NMPC, i.e.,
50 ms, so as to provide a fair comparison. However, as the low-
level robot control loops run at 40 Hz, one can further lower
the sampling time of the SSM schemes to 25 ms, thus using
a less conservative velocity modulation profile. As a result,
CSSM would slightly outperform the previously-described
NMPC scheme in the case without pauses (Pr = 67.62%), but
not in the cases with pauses (Pr equal to 55.77%, 47.13% and
40.80%, respectively, for the cases with 4, 8, and 12 s pauses).

VII. CONCLUSIONS AND OUTLOOK

The proposed NMPC law allows a robot to safely replan its
motion in the presence of a human: both theoretical stability
properties and the practical assessment of its productivity
compared to SSM schemes have shown its potential for indus-
trial applications. Future work will be devoted to testing the
proposed algorithm with actual human participants, in order to
account for the effect of unexpected human reactions to certain
motions of the robot induced by our controllers. Also, the
possible use of robust NMPC to account for imperfect tracking
of the predicted L-NMPC trajectory will be investigated.
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