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Abstract—This paper presents a new methodology for mod-
eling and simulation of spherical parallel manipulators (SPM)
in CoppeliaSim (V-REP) robot simulator software. Using a SPM
with coaxial input shafts as the case study, the steps for the robot
SolidWorks CAD model importing, modeling in CoppeliaSim
and interfacing with MATLAB for external control of the robot
model are described in detail. The SPM motion simulation results
are then presented and verified on an experimental 3D-printed
system prototype.

Index Terms—spherical parallel manipulator, robot simulation,
collision detection, CoppeliaSim, V-REP

I. INTRODUCTION

Parallel manipulators (PMs) are mechanisms with closed-
loop kinematic chain architecture in which an end-effector,
usually referred to as a moving/mobile platform, is connected
to a fixed base through two or more chains. Contrary, serial
manipulators are mechanisms which are comprised of a single
open-loop kinematic chain. Thanks to their parallel architec-
ture, PMs usually have a higher payload, are faster, more
rigid, and more precise compared to their serial counterparts.
Applications of PMs typically include pick-and-place robo-
tized systems [1], orientation and stabilization platforms [2],
pointing and tracking devices [3].

Despite of the above-mentioned advantages, PMs’ main
disadvantages are small workspace and complicated kinematic
and dynamic analyses. These drawbacks make control of
PMs a challenging task due to the necessity of the detailed
kinematic analysis (especially, forward kinematic analysis) and
obtaining Cartesian workspace and joint configuration space
of a particular PM with the elimination of singular and self-
collision configurations. Here, the singular configurations are
referred to as the ones leading to a rank deficient Jacobian
matrix of a manipulator [4], whereas the self-collision config-
urations are those resulting in a physical interference of two
or more PM links.

Simulation tools are widely used for robot kinematics
and dynamics modeling, motion optimizations, performance
evaluation, and control strategy verification where simulations
are performed before the experimental tests on real system
prototypes. There is a plethora of simulation tools that al-
low to visualize and analyze kinematics and/or dynamics
of PMs. Most of them are special simulators created for
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a particular problem or robot [5]–[10]. Among the general-
purpose simulators, the most known example is Gazebo [11]
developed by Open Source Robotics Foundation and used in
DARPA Robotics Challenge [12]. Versions for Linux, macOS,
Windows are available. It is also ROS [13] compatible. It
supports the ODE, Bullet, Simbody and DART physics en-
gines and can provide realistic 3D rendering. Custom plugins
for robots and integrated sensors can be developed through
Gazebo API. It allows dynamic robot bodies with scripting
based on C++. Currently, Gazebo is being refactored into the
new Ignition Gazebo simulator. Other popular open-source
robot simulator is Webots [14] developed by Cyberbotics Ltd
primarily for mobile robot simulations. The software runs on
Windows, Linux and macOS. Robots may be programmed
in C/C++, Python, Java, MATLAB or ROS through an API.
The simulator uses ODE as the physics engine. RoboDK [15]
is a proprietary multi-platform software that is mainly used
for simulating industrial robotic arms. The RoboDK library
includes over 400 industrial robot arms. The default RoboDK
API is provided in Python, C++, MATLAB, etc. Analysis of
the reviewed simulators revealed that they are not well suited
for simulating closed kinematic chains and require advanced
knowledge of the software.

One of the standard tools used for multibody dynamics
simulation of closed-loop kinematic chains is Adams devel-
oped by MSC Software. It is a proprietary software requiring
user experience for working. Alternatively, a widely used in
robotics research general-purpose robot simulation framework
CoppeliaSim (formerly known as V-REP) [16] developed by
Coppelia Robotics is freely available for academic purposes.
The simulator offers a wide functionality that can be easily
integrated and combined through an embedded scripting and
exhaustive API based on Lua, C/C++, Python, Java, MAT-
LAB/Octave and ROS programming interfaces. CoppeliaSim
supports different physics engines such as ODE, Bullet, Vor-
tex, Newton. It can handle the inverse/forward kinematics of
any type of mechanism with workspace visualization, sensors
simulation, distance calculation, and collision detection. It has
built-in examples of several PMs.

In this paper, the authors present the methodology for
modeling and simulation of spherical parallel manipulators
with coaxial input shafts (coaxial SPM) currently researched
at ALARIS Laboratory (https://www.alaris.kz) of Nazarbayev
University. It is a special case of a 3-DOF SPM capable of
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infinite rotation around any axis within its workspace. Due to
its user-friendly interface, link collision detection capabilities
and availability of external API with MATLAB, CoppeliaSim
software was selected as the robot simulation tool, realizing
visual demonstration of the system motion, precomputed in
MATLAB. Extensive publication and documentation review
revealed the lack of detailed literature dedicated to modeling
and motion control of PMs in CoppeliaSim. Therefore, the
main contribution of this paper is an attempt to address this
issue by presenting the coaxial SPM modeling and simulation
in detail as a tutorial case study. The results of this work
constitute a groundwork for the development of motion control
algorithms for the considered SPM. Moreover, the methodol-
ogy presented in this paper can be adopted to modeling other
PM topologies.

The paper is organized as follows. Section II describes
kinematics of the coaxial SPM with details on its 3D modeling
in SolidWorks CAD software and manufacturing of a real 3D
printed prototype, used for validating preliminary simulations.
Section III presents details on importing the coaxial SPM 3D
model to CoppeliaSim, and outlines the steps required for
setting up simulations and linking with MATLAB using the
remote API. Examples of the coaxial SPM motion control and
self-collision detection are presented in Section IV. Finally, the
paper is concluded with Section V, where a future work plan
is outlined.

II. COAXIAL SPM MODEL

A. Kinematics

Kinematic analysis of the coaxial SPM originates from that
of the general SPM, which is an extensively studied topic
[17]–[21]. This section presents a summary of the coaxial
SPM’s geometric and kinematic models, and foundations of
its kinematic analysis.

The upper platform of the coaxial SPM, known as the mo-
bile platform, is connected to the stationary base through three
equally-spaced legs numbered as i = 1, 2, 3 in the counter-
clockwise direction, and each of them is composed of two
curved links: proximal (lower) and distal (upper). Angles α1

and α2 define the curvature of these links, respectively. The
axes of the base, the intermediate, and the mobile platform
joints intersect at the center of rotation and are defined by
the unit vectors ui, wi, and vi, respectively, directed from the
center of rotation towards the respective joints. The actuated
joints ui are coaxial to each other as demonstrated in Fig. 1a.

The stationary right-handed orthogonal coordinate system
with its origin located at the center of rotation is shown in Fig.
1a. The z-axis is normal to the base and is directed upwards,
while the x-axis is located in the plane generated by the z-axis
and a central vertical plane of the proximal link 1 at the robot
home configuration. The y-axis is determined by the right-
hand rule. Angle β defines inclination of the mobile platform
joints vi from the z-axis.

The home configuration of the coaxial SPM is chosen
such that all three proximal links are located 120◦ apart. In
this case, the mobile platform is horizontal and its normal

Fig. 1: Coaxial SPM kinematic model: (a) coordinate system
and notation, where 1 - mobile platform, 2 - distal link, 3
- proximal link; (b) positive direction of the actuated joint
positions with respect to the robot home configuration (shown
as transparent).

vector coincides with the positive z-axis. Input joint positions
constituting vector θ ,

[
θ1, θ2, θ3

]T
are measured from the

planes defined by the z-axis and the unit vectors wi, i = 1, 2, 3
at SPM’s home configuration to the planes of proximal links
of the corresponding SPM legs with the clockwise direction
being the positive direction as illustrated in Fig. 1b. At the
home configuration, the vector of input joint positions is set
to θ =

[
0, 0, 0

]T
.

Once the geometric model of the manipulator is defined, its
kinematic model can be derived with all mathematical relations
between Cartesian and joint spaces. In [18] it was shown that
this type of manipulators have 8 solutions to forward and 8
solutions to inverse kinematic problems. These solutions were
analyzed by the authors in the context of the coaxial SPM in
[22]. In the same work the approach for computation of unique
kinematic solutions was presented allowing identification of
the solutions corresponding to the same assembly mode of
the manipulator as a necessary condition for their further use
in the SPM control system design [23] based on the analysis
of the space of feasible configurations [24].

B. 3D Modeling and Prototype Manufacturing

The coaxial SPM with geometrical parameters α1 = 45◦,
α2 = 90◦, and β = 90◦ was created. A 3D CAD model of the
coaxial SPM assembly corresponding to these parameters was
designed in Solidworks CAD software (www.solidworks.com)
and is presented in a rendered form in Fig. 2a.

Experimental verification of CoppeliaSim simulations was
done using a physical prototype of the coaxial SPM,
manufactured using 3D printing technology and assembled
as demonstrated in Fig. 2b. The prototype dimensions are
L 200 mm x W 200 mm x H 290 mm (bounding box at the
home configuration). Actuation of the coaxial base joints
is performed by three ROBOTIS Dynamixel XM540-W150
servomotors (http://en.robotis.com/) fixed on the SPM base
platform in a circular arrangement being equally distributed
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Fig. 2: (a) A 3D CAD design and (b) an experimental 3D-
printed prototype of the coaxial SPM.

with 120◦ between each other. The central vertical planes
of the proximal links are coincident with the corresponding
straight lines connecting centers of actuating gear pair, at
the home configuration. The actuators are controlled from
MATLAB using Dynamixel SDK (Protocol 2.0) API. Double
helical gears are used for transferring actuator torques to
proximal links with gear ratio 1:1.

III. MODELING AND SIMULATION IN COPPELIASIM

A. Creating Coaxial SPM Model in CoppeliaSim

The first step of the robot simulation procedure is to create a
properly defined manipulator model in CoppeliaSim satisfying
all mechanical constraints, such that motion simulation of the
manipulator model resembles behavior of its real physical
prototype. The manipulator model designed in SolidWorks
software was imported to CoppeliaSim environment. For im-
porting the CAD model from an external application, it is
important to use a not heavy CAD model, i.e. without too
many triangles. Otherwise, a heavy CAD model would slow
down graphical visualization and various calculation modules.
For this reason the CAD model imported to CoppeliaSim was
simplified in SolidWorks by removing all noncrucial design
features such as holes and small details. Once finished, the
manipulator CAD model was saved in STL format, one of the
file formats supported by CoppeliaSim. The whole manipulator
assembly was imported to the simulator as a single mesh and
number of triangles contained in this mesh was reduced using
the decimate the mesh function. Next, the automatic mesh
division function was used to split the manipulator model to
separate links. The base platform, actuators and gears were
simplified and merged together to represent a single stationary
base link, thus decreasing computational costs. Then, the
imported CAD model was reoriented such that coordinate
system of the model matches that of the kinematic model
described in Section II. The resulting CoppeliaSim model of
the coaxial SPM is presented in Fig. 3 and consists of 7
shapes representing the manipulator links: the base, 6 mobile

Fig. 3: CoppeliaSim simulation model of the coaxial SPM.

links, and mobile platform. To improve visual aspects of the
simulation, the legs were colored in different colours. After
these preparatory steps were accomplished, the model was
ready to be assembled resembling closed-loop chain kinematic
architecture of the manipulator.

The resulting scene hierarchy is shown in Fig. 4. There are
2 closed loops in this scene. The first one is base - proximal
link 3 - distal link 3 - mobile platform - distal link 1 - proximal
link 1, and the second one is base - proximal link 3 - distal link
3 - mobile platform - distal link 2 - proximal link 2. In order
to close the loop it is necessary to use dummy objects that are
connected to the base and the last elements in the loops; all
of them should located in the center of the base. It is due to
those dummy objects the simulator can simulate PMs.

In order to make the kinematics calculation module to
work properly the IK groups have to be enabled, added, and
activated in the simulator settings. In the case of the coaxial
SPM it is necessary to have 2 IK groups with 2 IK elements in
each (closure-tip-1 linked to closure-target-1, and closure-tip-
2 linked to closure-target-2, also shown in Fig. 4 with dashed
arrows). All constraints (X, Y, Z, Alpha-Beta, Gamma) have to
be enabled in the settings of IK groups.

The Damped Least Squares (DLS) calculation method with
the damping coefficient equal to 0.0001 was selected for the
kinematics calculation module. It should also be noted that
all joints used are revolute (red cylinders in Fig. 3) and are
also used as the intermediate elements in the above-mentioned
loops. The actuated joints (highlighted with red colour in Fig.
4) are set to the inverse kinematic mode in Scene Object
Properties menu, whereas remaining joints are set to the
passive mode.

One of the important features of CoppeliaSim robot sim-
ulator is its built-in collision detection module that allows
fast interference checking between any shape or collection
of shapes. It uses data structures based on a binary tree of
oriented bounding boxes [16], [25] for accelerations. In order
to have this feature in the simulation of the coaxial SPM it is
necessary to enable all collision detections under calculation
module settings. Afterwards, new collision objects have to



Fig. 4: CoppeliaSim scene hierarchy.

be added without enabling explicit handling mode. In this
paper, collision checks between each link versus all other
links (entities) have been implemented, resulting in 8 collision
objects. Whenever the link collision happens CoppeliaSim
changes link colours to indicate the collision event, and sends
this information to an external client.

Each link in CoppeliaSim has a position and an orientation
in the 3D space. In order to determine the position and the
orientation of the link we can use either absolute coordinates
or joint coordinates. Due to the fact that the origin of the
global coordinate system is located in the center of the bottom
surface of the base, dummy objects were added to the center of
rotation and all joints (position-origin, position-v1, position-
v2, position-v3, etc. in Fig. 4). In this way, the vectors

representing these joints, i.e. ui, wi, and vi, are calculated
as the difference between each link dummy and the center of
rotation dummy.

B. Model Interfacing with MATLAB and Motion Control
The manipulator model created in CoppeliaSim was in-

terfaced with MATLAB using the remote API link. The
link allows running simulations directly from MATLAB with
simultaneous data transfer between both programs. The math-
ematical model and equations described in [22] and imple-
mented in MATLAB were used to verify simulated positions
of the manipulator joints.

Generally, there are two ways to control PMs in Cop-
peliaSim. One way is by controlling the actuator positions (in-
put angles) that through solving the forward kinematics prob-
lem would rotate the SPM top mobile platform. Alternatively,
direct orientation control of the SPM top mobile platform will
lead to solving the manipulator inverse kinematics problem.
In this paper, the first approach was implemented.

The first step in linking MATLAB to CoppeliaSim is
to copy vrchk.m, remoteApiProto.m, remApi.m, and re-
moteApi.dll files from CoppeliaSim installation folder or
website (www.coppeliarobotics.com) to MATLAB working
folder. These files contain necessary API information and
functions. After establishing communication with the sim-
ulator using vrep.simxStart function, the motion control of
the simulated coaxial SPM can be realized. In order to
be able to control simulated joints via MATLAB, at first,
joint handles have to be obtained from the simulator using
vrep.simxGetObjectHandle function. Afterwards, joint posi-
tion can be read or varied using vrep.simxGetJointPosition
and vrep.simxSetJointPosition functions, respectively. If col-
lision detection handle is required to be returned to MAT-
LAB, this is done using vrep.simxGetCollisionHandle and
vrep.simxReadCollision functions. Handles are returned from
CoppeliaSim in the form of unique numbers assigned to each
object, joint positions are returned as angle values in radians,
collision events variable takes values 1 when indicating the
collision and 0 if no collision occurs.

The coaxial SPM simulation model is actuated via
MATLAB commands sent to actuated joints (highlighted in
red in Fig. 4). Before sending any commands to the simulator
it is also necessary to verify that input joint vector θ does
not lead to a singular configuration. It is done in MATLAB
using the approach for computing the coaxial SPM unique
kinematic solutions presented in [22] and verifying that the
Jacobian matrix at this specific SPM configuration is full-rank.

The same MATLAB-CoppeliaSim software configuration
can be implemented on Linux platform, or configured in ROS
using the remote API with Python scripting. Currently, authors
are in the process of developing such arrangements for future
integration of various sensors or other devices to the coaxial
SPM via ROS framework.

IV. SIMULATION RESULTS

Let’s consider input joint positions θ =
[
60◦, 90◦, 120◦

]T
.

To determine the resulting orientation of the coaxial SPM top
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Fig. 5: Simulated configuration (a), experimental prototype
configuration (b).

mobile platform, i.e. to compute unique unit vectors vi, i =
1, 2, 3, as indicated in Fig. 1, the approach [22] was used. The
resulting SPM orientation is obtained as follows

v1,calc =
[
−0.8626, 0.0790, −0.4997

]T
,

v2,calc =
[
0.5002, −0.8659, 0.0003

]T
,

v3,calc =
[
0.3618, 0.7866, 0.5003

]T
.

(1)

The simulated orientation of the coaxial SPM has the fol-
lowing unit vectors vi, i = 1, 2, 3, obtained as the normalized
difference between dummy objects attached to joints and the
center of rotation:

v1,sim =
[
−0.8623, 0.0794, −0.5001

]T
,

v2,sim =
[
0.5001, −0.8660, 0.0000

]T
,

v3,sim =
[
0.3622, 0.7866, 0.5001

]T
.

(2)

Configuration of the coaxial SPM corresponding to input
joint positions θ =

[
60◦, 90◦, 120◦

]T
, both simulated and

experimentally tested on the coaxial SPM physical prototype,
can be observed in Fig. 5.

Time evaluations of the mobile platform orientation vectors
vi, i = 1, 2, 3, during the SPM motion from the SPM
home configuration to the configuration corresponding to
θ =

[
60◦, 90◦, 120◦

]T
are shown in Fig. 6. The unit vectors

vi, i = 1, 2, 3, are represented individually by their x, y, and
z components. It is seen that simulated motion of the coaxial
SPM closely matches the expected numerically precalculated
behavior. This comparison is done based on 25 samples and
interpolation values between them.

Considering another SPM configuration with input joint
positions θ =

[
60◦, 90◦, 220◦

]T
, we can observe the simulated

link collision event detected by CoppelliaSim built-in collision
detection module as illustrated in Fig. 7. Here, the collision
between four SPM links, i.e. proximal link 2, distal link 2,

v1z
v1x

v1y

v2z

v2y

v2x

v3y

v3z

v3x

Fig. 6: Calculated and simulated orientations of the coaxial
SPM.

Fig. 7: Simulation model of the coaxial SPM with detected
link collision (collided links are coloured in black).

proximal link 3 and distal link 3, happened and is indicated
by the changed colours (to black) of the links.

In overall, based on the presented and other numerous
computation results and experimental trials on placing the ma-
nipulator to various arbitrary configurations, it was observed
that the CoppeliaSim simulated SPM model fully replicated
the motion and resulting orientations of the coaxial SPM
physical prototype (at this stage this was verified only visually)
and correlated very well with numerically calculated SPM ori-
entations. The accompanying video demonstration is available
at the author’s research lab website https://www.alaris.kz.
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V. CONCLUSIONS AND FUTURE WORK

In this paper, a new methodology was presented for mod-
eling and simulation of parallel manipulators in CoppeliaSim
robot simulator based on the example of a SPM with coaxial
input shafts. Kinematics of this manipulator was discussed
followed by the detailed explanation of CoppeliaSim modeling
steps and the model control from MATLAB using an interface
CoppeliaSim-MATLAB API. Simulation examples supported
by experimental verification using a real physical prototype
of the manipulator were demonstrated. It was shown that
proposed methodology allows accurate simulation of the con-
sidered parallel manipulator configuration and can be adopted
for modeling and motion simulation of other closed kinematics
robot systems. Furthermore, the adopted in this study MAT-
LAB based control approach of the manipulator’s CoppeliaSim
model has proven to be a promising testing/simulation tool for
motion analysis and collision detection of PMs, that could be
potentially useful for design optimization of manipulators and
other applications.

This work is setting the basis for future extensions of
authors’ research work on SPMs such as generation and
simulation of singularity and collision-free workspaces for
manipulator motion and path planning and analysis. As im-
mediate future work, we plan to further develop and test in
simulations the coaxial SPM orientation control using the pre-
sented approach for ensuring the robot collision-free behavior
before experimental trials on the real physical prototype of the
manipulator. Another idea is to use the proposed methodology
in developing learning algorithms (e.g. reinforcement learning)
verified and tested via simulations.
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