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Abstract— With the widespread of research in the field of
autonomous vehicles the value and impact of various simu-
lators increase dramatically as they allow for quick and safe
experimentation with the design of a vehicle, environment and
driving scenarios. In this paper, the authors demonstrate how
autonomous vehicle research and development can be facilitated
by open-source robot simulators based on the experience gained
from a robotized KAMAZ NEO truck industrial project. In
particular, the Webots robot simulator was applied for 3D
reconstruction of the experimental test-site for vehicle motion
simulation and development of a web-based dashboard for
controlling and monitoring the autonomous vehicle both in the
simulation and the real-world.

I. INTRODUCTION

Specialized software simulators found wide application in
autonomous vehicle research due to their flexibility to model
realistic experimental scenarios for testing vehicle motion
planning algorithms. Example applications are simulation
of traffic in urban regions. Several simulators are being
developed for the needs of research such as SUMO (Sim-
ulation of Urban Mobility), the open-source simulator for
designing communications between platoons of autonomous
vehicles [1]. Another example is AORTA (Approximately
Orchestrated Routing and Transportation Analyzer) simula-
tor - a traffic simulator with continuous simulation, where
autonomous vehicles analyse roads every time-step for traf-
fic jams, intersections to follow the shortest route to goal
[2]. The SiVIC (Simulation for Vehicle, Infrastructure, and
Sensors) was developed to be able to design a copilot for
maneuver-based trajectory planning [3]. Immersive vehicle
simulators such as the Stanford Driving Simulator can be
used to provide realistic interface to user and receive new
velocity and position correction. These simulators can be
used to imitate driver distraction emergency situations [4].
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Fig. 1. Experimental KAMAZ NEO 5490 truck redesigned to a robotized
vehicle.

In addition to wide applications in robotics research, open-
source mobile robotics simulation software platforms such as
Webots [5] have high potential for facilitating autonomous
vehicle research. In [6] and [7] the simulator was applied
for performance evaluation of vehicular platoons. This paper
presents a case study of application of the Webots simulation
software for facilitating an industrial project conducted at
Nazarbayev University in cooperation with VIST (ZYFRA
Group) company [8], the leading developer of self-driving
and remotely driven robotized cargo vehicles for mining
industry in Russia, focusing on collaborative development
of a robotized vehicle on the basis of a novel KAMAZ NEO
5490 truck chassis provided by KAMAZ [9], the largest
Russian truck manufacturer.

II. HARDWARE AND SOFTWARE PLATFORMS FOR THE
ROBOTIZED KAMAZ TRUCK PROJECT

Within the robotized KAMAZ research project tasks were
divided as follows: the VIST (ZYFRA Group) partners
retrofitted a test KAMAZ vehicle to drive autonomously by
equipping it with their patented autopilot hardware/software
system, thus, in fact, converting the truck into a mobile robot
platform, that can be remotely telecontrolled by a human
operator or move autonomously following a high-level mis-
sion planner (Fig. 1). For establishing a low-level control
of the vehicle, the VIST(ZYFRA Group) team adopted their
autonomous software models and algorithms from previous
projects in robotization of dump mining trucks such as algo-
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Fig. 2. a) The project test site simulated in the Webots environment; b) A Webots truck model used for autonomous vehicle motion simulation.

(a) (b)

Fig. 3. a) Top view of the Webots simulated project test site; b) Top view of the artificially generated map for ROS-based vehicle motion planning.

rithms for steering wheel control and modules of acceleration
and brake controls for specific types of trucks with different
physical models. Communication with KAMAZ vehicle’s
transmission and braking systems was easily set up via CAN
and LIN protocols. Due to the vehicle’s mechanical steering
system, a dedicated mechatronic motion control system for
the vehicle’s steering wheel was designed by the VIST
(ZYFRA Group) team engineers, for steering the vehicle
following digital commands. The most complicated part of
the project work was to design a hardware controller for the
vehicle’s acceleration control system due to its atypical PWM
signal format. Additional equipment for autonomous driving
such as navigation system, network system and set of sensors
were also supplied as part of the VIST (ZYFRA Group)
standard equipment kit. Moreover, a fully equipped remote
control center was installed so that a vehicle operator could
efficiently supervise autonomous driving of the robotized
KAMAZ truck during experimental testing.

In parallel, the NU project team was tasked to de-
velop software modules for vehicle autonomous motion
planning and trajectory following, and machine vision de-
tection and recognition of pedestrians, vehicles and road
signs. As part of the project the NU team proposed
to develop a 3D visualisation environment for simulation
and initial testing of the developed vehicle motion plan-
ning software module. More detailed information about

the project developments with video demos is available
at the project web-page https://www.alaris.kz/
research/robotized-kamaz-truck/

The Robot Operating System (ROS) [10] was chosen as
a software platform for integrating developed modules with
the vehicle autopilot system based on the experience of the
project partner VIST (ZYFRA Group) [11]. ROS is a de-
facto standard software development platform for intelligent
robotics research due to its distributed and modular archi-
tecture allowing easy integration of custom control and data
processing algorithms.

As the work on retrofitting the test KAMAZ vehicle
started in parallel with the software module development,
we started the project with identifying an experimental test
site and creating its 3D simulation environment where the
truck model could be placed for simulation analysis of the
vehicle motion planning algorithms implemented in ROS. A
comparative analysis of the freely available for academic use
and ROS-compatible robot simulators including CoppeliaSim
(VREP), Gazebo and Webots revealed that the latter is the
most suitable option for quick utilization in the project.

Webots was initiated as a dedicated simulation software for
mobile robotics research [7]. From 2019 it became an open-
source platform for modeling experimental scenarios using
a variety of commercial robots and typical vehicle models
that can be equipped with virtual models of commercial
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proximity sensors, i.e. LIDARs, GPS, IMU and others. The
simulator provides graphical tools for modeling experimental
environment. It is interfaced to ROS through standard ROS
message passing mechanisms, i.e. topics and services, allow-
ing direct control of the Webots vehicle models from ROS
and receiving feedback data from the model sensors. This
facilitates fast deployment and realistic testing of custom
motion planning and sensor data processing algorithms,
implemented externally in ROS as they would be applied
on a real experimental robot.

III. SIMULATION OF THE AUTONOMOUS VEHICLE
MOTION

An outdoor open car parking site located within the
Nazarbayev University campus was chosen as the project test
site. Using the simulator’s graphical tools and engineering
blueprints of the parking space, its real-size 3D model was
created in Webots as demonstrated in Fig. 2(a). The Webots
truck vehicle model, shown in Fig. 2(b), was added to
the simulated environment. To replicate the real robotized
KAMAZ vehicle, a Velodyne VLP-16 LIDAR, IMU and GPS
sensor models were added to the Webots vehicle model. The
truck model was controlled from ROS through rosservice
commands sending linear velocity and wheel rotation angle
information and receiving vehicle’s current position and
orientation data from sensors.

Implementation of the vehicle motion trajectory planning
module in an a-priory known environment requires a 2D
occupancy map of the test site which reflects the road and
parking site borders and all possible internal stationary obsta-
cles. At the initial stage of the project it was decided to create
a 2D map of the Webots simulated test site using the ROS
gmapping package that implements the Rao-Blackwellized
particle filter based algorithm for robot simultaneous local-
ization and mapping (SLAM) [12]. The algorithm processed
the LIDAR point cloud sensor measurements artificially
generated and collected from the manually controlled truck
model across the test site in Webots. Figure 3 presents the
Webots simulated test site and its 2D occupancy map, where
black and white pixels represent obstacle and free spaces,
respectively, while grey pixels denote unexplored area. The
generated map was saved using the ROS map server package
in the .pgm format for further use.

Due to short project duration it was ultimately agreed
to utilize the built-in ROS Navigation Stack packages for
vehicle trajectory planning and motion command generation.
Specifically, we employ the ROS move base package to
apply A* global path planning algorithm [13] for vehicle
trajectory planning to a dynamically specified target location
within the test site. The Timed Elastic Band (TEB) planner
(implemented as ROS teb local planner package) is applied
for vehicle local trajectory planning and control command
generation taking into account the car-like robot kinematics
and dynamically detected obstacles [14]. Specifically, the al-
gorithm finds an optimal solution along the pregenerated A*
global trajectory, and creates the closest kinematically real-
istic local path as sequence of vehicle poses pi = (xi,yi,θi)

T .
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Fig. 4. Webots simulation of the truck motion in the test site.

Furthermore, the algorithm generates a corresponding set of
vehicle linear speed υi and steering angle control commands
within the predefined vehicle velocity and acceleration limits
and safe distances to obstacles [15].

Figure 4 presents a sequence of time shots of the Webots
simulation run demonstrating the truck motion generation
from a starting position in Fig. 4(a) towards its target position
in the middle of the test parking site as shown in Figs. 4(b)
and 4(c). The left column of each subfigure shows the truck
model moving inside the test site in the Webots simulator.
The right column presents ROS RViz visualization of the 2D
test site occupancy map with generated vehicle global (green)
and local (blue) trajectories. The global trajectory defined the
vehicle path from the vehicle start point to its target position.
The local trajectory of the truck is restricted by the size of



the local costmap, i.e. the white area defining free space
and dynamically detected obstacles, e.g. parked cars, in the
vicinity of the truck. The detected obstacles are transformed
to red colored convex polygons by the TEB planner in the
local costmap, while the green rectangle denotes the truck
footprint as shown in Fig. 4.

IV. DESIGN OF A WEB-BASED VISUALIZATION
DASHBOARD

Direct interaction with ROS is not intuitive enough for
non-users, especially, in the context of real-world testing of
the autonomous vehicles software packages. As the robotized
vehicle completely controls its motion including steering
and speed controls, psychological comfort of the vehicle
passengers can be ensured by increasing their awareness on
vehicle actions through a suitable human-machine interface
(HMI) [16]. The minimal setup for such a HMI should
contain the vehicle’s current status, its intention for the
next action and navigation information as well as the basic
control buttons [17], [18]. Majority of the HMIs implemented
as dashboards for autonomous vehicles are patented and
released as proprietary commercial software built by vehicle
manufactures or third-parties like Tesla, Waymo, NVIDIA,
with very limited configuration options. Existing open-source
projects like Udacity Self-Driving Car [19] or OpenPilot [20]
are still in their infancy, designed for specific car platforms,
and would require additional customization.

As part of the industrial project we have developed a new
simplified dashboard for the robotized KAMAZ truck control
and state monitoring. The dashboard was implemented as a
web application similarly to [21] but using Flask and Vue. js
frameworks for the back- and front-end development, respec-
tively. The web application format provides great flexibility
in interface development and data presentation as it can be
viewed on either on-board PC, tablet or cell-phone devices.

Figure 5 demonstrates the dashboard user interface con-
sisting of two parts: a control panel and the Google Maps
visualization of the project test site for real-time vehicle’s
position tracking along with its global and local trajectory
display. During the experimental testing, the global and local
path visualizations proved to be the most essential factors
for ensuring truck passengers’ awareness about the vehicle’s
intended actions, and, thus, overall driving comfort and
safety. The control panel allows to establish connection with
ROS-based truck control modules for setting and publishing
vehicle trajectory waypoints and final vehicle pose on the
test-site map, and, finally, to start and stop the vehicle in the
autonomous mode. Additionally, there is also a second tab
for vehicle telemetry information.

The dashboard can operate in two modes - testing in the
Webots simulator or production when connected to the real
vehicle. In either mode the ROS interface is established using
the roslib js library [22] via WebSockets [23] connecting
to rosbridge for topic publishing and subscription, service
calls and other ROS functionalities. The dashboard can be
accessed remotely over the Internet or locally within the
roscore based network.

The dashboard development was done using the Webots
truck motion simulations. To monitor the position and state
of the vehicle model in Webots, special conversion method
was developed to convert data between the Webots local
coordinate frame (shown in Fig. 5) and the GPS coordinate
system used by Google Maps module in the web interface.
The GPS uses the World Geodetic System (WGS84) as
its reference coordinate system. Although Webots internally
supports it as well, subsequent dashboard interfacing with
the experimental robotized KAMAZ truck also required
transformation of the truck coordinates defined in the local
RTK (real-time kinematic) frame of the VIST (ZYFRA
Group) autopilot system (the frame is defined as in Fig. 5).
This allowed to use the same coordinate transformation from
both the Webots simulated and real RTK local frames to the
GPS and vice versa.

Given the vehicle’s position with coordinates (x,y), spec-
ified in metres in a local frame, the corresponding GPS
coordinates, i.e. latitude ϕ and longitude λ , are computed
as follows [24]:

θ = atan2(x,y) · 180
π

; (1)

d =
√

x2 + y2; (2)

δ =
d
R

; (3)

ϕ = ϕ0 +δ · cosθ ; (4)

∆ψ = ln
(

tan(0.25π +0.5ϕ)

tan(0.25π +0.5ϕ0)

)
; (5)

q =
∆ϕ

∆ψ
; (6)

∆λ = δ · sinθ

q
; (7)

λ = λ0 +∆λ , (8)

where θ and d denote bearing and distance , ϕ0 and λ0 are
the GPS coordinates of the local frame and R = 6,356,356.7
m is the Earth’s radius.

On the other hand, given the vehicle’s goal position set in
the dashboard in the GPS latitude and longitude coordinates,
the conversion to a local frame is done as follows. Firstly, a
distance and a rhumb line bearing are computed as below:

θ = atan2(∆λ ,∆ψ); (9)

d = arccos(sinϕ0 · sinϕ + cosϕ0 · cosϕ · cos∆λ ) ·R, (10)

where ∆ψ and ∆λ and are found using (5) and (7), re-
spectively. Finally, the corresponding vertical and horizontal
components of d are used as new equivalent x and y local
coordinates.

Although, this coordinate transformation technique is not
physically exact, the dashboard testing with the Webots
simulations confirmed its sufficient accuracy comparable
with the centimeter’s scale precision of the RTK system used
with the experimental KAMAZ vehicle. In addition, the low



Fig. 5. Web-based dashboard interface for remote control and monitoring of the vehicle movement in real-time. Left side shows the KAMAZ RTK and
the Webots frames in the global GPS frame.

computational power demands allowed remapping hundreds
of points representing current and target positions of the truck
model and its local and global trajectories from the Webots’s
local frame to the GPS in real-time.

V. EXPERIMENTAL RESULTS

A. Generation of the Project Test Site Map

Integration of the adopted ROS-based motion planning
module to the experimental robotized KAMAZ NEO truck
started from preparing a realistic 2D map of the physical test
site, i.e. the car parking site with connected road segments.
The vehicle tracking was conducted in the local RTK frame,
positioned such that it would cover the whole test site within
the positive directions of x and y frame axes as shown in
Fig. 5 for error-less coordinate transformations.

In the process of initial testing of the robotized KAMAZ
truck sensor measurements were recorded from the vehicle
Velodyne VLP-16 LIDAR, IMU, and RTK coordinates into
ROSBAG files while the truck was manually driven across
the test site, i.e. the parking site, until each obstacle was
scanned at least ones. Using the collected sensor data a
3D point cloud of the test site was restored using the
ROS-integrated Point Cloud Library (PCL) tools and then
transformed into a 2D occupancy map as follows.

First, the point cloud data was processed with a Voxel
Grid Filtering algorithm to reduce the point cloud size by
grouping points into 3D voxels of a prespecified size equal
to 0.2 m and approximating them by computing centroids in
each voxel. Next, all points belonging to the asphalt covered
surface of the test site were excluded. Due to the uneven
nature of the test site surface plane it was experimentally
determined to filter out all points that lie below a 0.09 m
threshold level from it. The remaining points corresponded
to boundaries (obstacles) of the test site. The final 3D point
cloud representation of the test site obstacle map is presented

Fig. 6. Constructed 3D obstacle map of the project test site.

in Fig. 6. Subsequently, a 2D occupancy map was generated
in the ROS .pgm format similarly to the artificial one in
Fig. 3(b). The map covers the square area 500 x 500 m with
the precision set to 0.4 m per pixel.

B. Interfacing of the Motion Planning Module

The adopted ROS-built-in vehicle motion planning mod-
ules, described in Section III, were interfaced with the real
KAMAZ vehicle’s autopilot system. Although simulation
tests in Webots were accurate enough, during the initial
experimental tests on the real vehicle it was observed that
input velocity and steering angle commands to the vehicle
autopilot system were rapidly changing that caused abrupt
and fluctuated vehicle motion. This was attributed to high
latency of the vehicle autopilot hardware that forced the
planner algorithm to overcompensate and enforce control
commands in subsequent actions.

To avoid abrupt changes in the velocity and steering angle,
which could damage mechanical systems of the vehicle,
a simple data smoothing was integrated adopting a Finite
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Fig. 7. (a) KAMAZ truck steering angle and (b) linear velocity command signals before and after filtering.

Fig. 8. Graphical representation of nodes and topics of the ROS-based motion planning module of the robotized KAMAZ truck.

Impulse Response Filter algorithm defined as

y[n] =
k

∑
i=0

bix[n− i]. (11)

After several experiments, the best performance was ob-
served during 10-order discrete convolution of the steering
angle. The filter weights were computed using an exponent
function and were set as b = {4.1727, 3.6173, 3.1357,
2.7183, 2.3564, 2.0427, 1.7708, 1.5351, 1.3307, 1.1536}.
In this configuration, the last and previous ROS-generated
steering angle signals contribute 17.5% and 15% respectively
in the filtered angle control command send to the vehicle.
The velocity commands were processed with 5-order filter
with b = {1.5169,1.3956,1.2840,1.1814,1.0869}. In this
case, the last and previous ROS-generated velocity signals
contribute 23% and 22% to the processed velocity command.
Figure 7 shows the results of the integrated smoothing filter
with command values from the TEB planner shown in blue
and red before and after filtering.

Figure 8 presents a graphical representation of nodes and
topics of the ROS-based motion planning module interfaced

with the experimental robotized KAMAZ truck. The vehicle
position and orientation are published by rtk pos and imu
nodes into /state and /imu topics, respectively, that are, in
turn, connected to odometry node for odometry computa-
tion. The A* trajectory planner in global planner node is
subscribed to the /odom, /goal and /map topics and based
on the received data generates the truck global trajectory, that
is then sent to T EB local planner along with the Velodyne
LIDAR sensor measurements and the vehicle odometry for
generating an obstacle-aware local path of the truck. The
output linear velocity and steering angle control messages
from T EB local planner node are passed via /cmd vel topic
to speed smoothing node for filtering, and are then ultimately
sent to the robotized KAMAZ autopilot system for execution
via /control topic.

The developed motion planning module also implements
a watchdog timer for stopping the vehicle in the case of
significant delay or absence of ROS control messages. In
addition, it is also able to integrate with a vehicle computer
vision module, that reduces the truck velocity control signal
in 80% from the original ROS-generated command upon
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Fig. 9. Dashboard and ROS RVIS visualizations of autonomous motion of the robotized KAMAZ NEO truck.

detection of a human in the vicinity of the vehicle.

C. Visualization Dashboard Integration and Testing

Integration of the developed visualization dashboard into
the experimental KAMAZ truck was done using the dash-
board WebSockets interface. The truck real-time location
with ROS-generated trajectories given in the RTK local
frame were converted to the GPS coordinates of the dash-
board following the coordinate transformation approach pre-
sented in Section IV.

On the other hand, after the vehicle target pose (position
and orientation) is set in the dashboard in the GPS frame, it
is converted to the local RTK frame and constantly published
to the ROS-based motion planning module via /goal topic
as shown in Fig. 8.

Figure 9 shows one of test launches of the robotized
KAMAZ truck on the test site visualized in the dashboard
and the ROS RViz visualization on background. The red
automobile marker in the dashboard’s Google Maps window
denotes the experimental KAMAZ truck while green and red
curves visualize the global and local trajectories, respectively.
After setting the truck target pose in the dashboard, the
truck starts moving along the generated global and local
trajectories as visualized in real-time in the dashboard in
Figs. 9(a) and 9(b). However, as shown in Figs. 9(c) and 9(d)
when the vehicle reaches the point on the global path that is
too close to the road borders, the local path is reconstructed
for maneuvering around the borders keeping save distance.

The tests were conducted with a driver and several team
members present in the truck, where they monitoring the
vehicle status via the web-based dashboard open on a vehicle
onboard computer. The driver did not control the vehicle and
was needed in case of a potential emergency situation for
stopping the truck by switching off the autopilot system and
getting manual control of the truck. Other team members
were observing outside with the dashboard application run
on handheld tablets. In overall, in all devices the dashboard
application clearly demonstrated the vehicle status in real-
time. Moreover, it was found out the along with the global
vehicle trajectory, visualization of the local path is very
valuable during experimental testing of the developed vehicle
modules. This was especially useful for the test driver who
could evaluate the truck behavior and intervene accordingly
in case of n emergency and/or significant deviation of the
vehicle from its generated trajectory.

VI. CONCLUSIONS
In this paper, we presented the case study of application

of ROS and the Webots robot simulator for developing
a web-based dashboard to support the development of an
autonomous KAMAZ NEO truck. Using the desctribed in the
paper simulation tools, we were able to implement additional
autonomous functionally to the remotely controlled robotized
truck prototype within a short period of time.

The presented work shows that open-source robot simula-
tors can be used well in advance before a test autonomous



vehicle platform is ready for experimentation for solving
various project tasks such as 3D modeling of the vehicle
and the environment, 2D occupancy map generation, testing
developed software modules and various driving scenarios.

It was experimentally confirmed that the vehicle dashboard
helps vehicle passengers to feel more comfortable and safe
during driving in an autonomous car in case of proper
information visualization.

As future work we plan to apply the gained in this project
experience and robot simulators for developing new robot
motion planning algorithms based on reinforcement learning
and social awareness.
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