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Abstract— One of the distinct features of 3-RRR spherical
parallel manipulators with coaxial input axes (coaxial SPM)
is the ability to perform infinite torsional motion of the
manipulator mobile platform around its normal vectors. This
paper presents a novel approach for infinite torsional motion
generation of the coaxial SPM based on the author’s revised
approach for obtaining unique solutions to SPM kinematics
and the methodology for numerical computation of the SPM
configuration workspace. Numerical results demonstrate the
application of the proposed approach for computing infinite
torsional motion of a 3D model of a novel coaxial SPM design.

I. INTRODUCTION

Spherical parallel manipulators (SPMs) are used in the
design of various mechanisms having three rotational degrees
of freedom (DOFs), including orientation platforms, haptic
devices, rehabilitation and exoskeleton systems, etc. [1]–[5].
In addition, robotic wrists based on SPM architecture may
serve as an alternative to the conventional industrial wrist
based on serial kinematic architecture [6].

Among numerous types of different 3-DOF SPM topolo-
gies that can be synthesized [7]–[11], the 3-RRR type SPMs
are one of the first thoroughly analyzed topologies [12]–
[14]. Some applications, such as active ball joints, machin-
ing tools, or special purpose orientation platforms, require
complete 360◦ or infinite torsional motion as one of the
design criteria. Such mechanisms can be realized based on
the special case of the general 3-RRR type SPM with coaxial
input axes (hereafter - coaxial SPM).

The traditional kinematic structure of the coaxial SPM,
illustrated in Fig. 1a, was firstly presented in [15] and further
analyzed in [16]. This SPM structure was realized in practice
in the design of a marine propulsor [17] and a 4-DOF
robotic link mechanism [18]. Another structural design of the
coaxial SPM was proposed in [19]. This design uses three
SPM leg actuators sliding on a circular guide, thus, ensuring
a complete torsional motion property of the manipulator.
However, to the authors’ knowledge, there were no publicly
reported research works, outlining theoretical foundations
for infinite torsional motion generation of the coaxial SPM,
required for its practical applications.

This paper presents a novel approach for infinite torsional
motion generation of a 3-RRR SPM with coaxial input axes.
The work is built upon the authors’ preliminary study [20],
reporting the extension to the case of a coaxial SPM of
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the previously developed approach for computing unique
forward and inverse kinematics solutions of a general 3-DOF
3-RRR SPM [21], which was also utilized in the development
of offline motion planning and real-time orientation control
frameworks for general SPMs in [22], [23].

The paper is organized as follows. Section II gives an
overview of the coaxial SPM kinematics, whereas the gener-
ation of infinite torsional motions is presented in Section III.
Subsequently, Section IV outlines the effects of singularities
and link collisions on the coaxial SPM configuration space
considering the infinite torsional motion of the manipulator.
Section V presents the numerical results of the infinite
torsional motion generation of the coaxial SPM simulation
model. Finally, conclusions are drawn in Section VI.

II. KINEMATICS OF THE COAXIAL SPM

This section introduces the notation and terminology to
be used throughout the paper, as well as presents the revised
approach for obtaining unique solutions to the inverse kine-
matics problem, initially proposed by the authors in [20].

A. Kinematic Model

The coaxial SPM consists of the mobile platform, which
undergoes a 3-DOF spherical motion, and is connected to a
stationary base via three equally-spaced legs numbered as
i = 1, 2, 3 in the counter-clockwise direction. Each leg is
composed of two curved links: proximal (lower) and distal
(upper). The angles α1 and α2 define curvatures of these
links, respectively. The geometry of the mobile platform is
defined by the angle β. The base joints, i.e. input joints,
have coaxial alignment as shown in Fig. 1a, allowing infinite
torsional motion of the SPM mobile platform. The axes of
the base, the intermediate, and the mobile platform joints
intersect at the center of rotation, and are defined by the unit
vectors ui, wi, and vi, for i = 1, 2, 3, respectively, directed
from the center of rotation towards corresponding joints.

The stationary right-handed orthogonal coordinate system
with its origin located at the center of rotation is shown in
Fig. 1a. The z-axis is normal to the base and is directed
upwards, while the x-axis is located in the plane formed by
the z-axis and the unit vector w1 at the home configuration.
The y-axis is determined by the right-hand rule. The home
configuration of the coaxial SPM is chosen such that all three
proximal links are located 120◦ apart. In this case, the mobile
platform is horizontal and its normal vector coincides with
the positive z-axis.

Input joint positions, constituting vector θ ,
[
θ1, θ2, θ3

]T
,

are measured from the planes defined by the z-axis and unit



Fig. 1: The coaxial SPM: (a) kinematic model (1 - mobile
platform, 2 - distal link, 3 - proximal link), (b) positive
direction of input joint positions with respect to the home
configuration (shown as transparent footprint).

vectors wi, = 1, 2, 3, at the home configuration to the planes
of the proximal links of the corresponding legs with the
clockwise direction being the positive direction as illustrated
in Fig. 1b. At the home configuration, the vector of input
joint positions is set to θ =

[
0, 0, 0

]T
.

Under the prescribed coordinate system, the unit vec-
tors ui, i = 1, 2, 3, of the base joints are defined as
ui =

[
0, 0,−1

]T
. The unit vectors wi, i = 1, 2, 3, of the

intermediate joints are expressed as:

wi =

cos(ηi − θi) sinα1

sin(ηi − θi) sinα1

− cosα1

 , (1)

where ηi = 2(i− 1)π/3, i = 1, 2, 3.
The unit vectors vi, i = 1, 2, 3, of the mobile platform

joints are used to define the orientation of the coaxial SPM.
Note: In this paper, the direction of legs numbering

(counter-clockwise), definition of the positive direction of
rotation (clockwise, right-hand rule applied on vectors ui,
i = 1, 2, 3), and alignment of the home configuration with the
fixed coordinate system are modified from that of [20]. This
is done in order to comply with the earlier works of Gosselin
et al. [12]–[14] and to preserve the notation and definition
consistency. These changes resulted in a slight modification
of the expression of the unit vectors wi, i = 1, 2, 3, as shown
in (1) and the coefficients Ai, Bi, and Ci used for obtaining
unique inverse kinematic solutions discussed in the next
subsection.

B. Inverse Kinematics

The inverse kinematics problem is defined by computing
the vector of input joint positions θ corresponding to a given
orientation of the mobile platform described by the unit
vectors vi, i = 1, 2, 3.

The geometric relation between the intermediate and the
mobile platform’s joints is described as:

wi · vi = cosα2, i = 1, 2, 3, (2)

After substituting (1) in (2) and performing the derivation
process, the details of which are omitted here due to space
limitations, the following three uncoupled equations for each
input joint position θi, i = 1, 2, 3 are obtained [13]:

AiT 2
i + 2BiTi + Ci = 0, i = 1, 2, 3, (3)

with

Ti = tan

(
θi
2

)
. (4)

Coefficients Ai, Bi, and Ci are formulated as follows:

Ai = − cos ηi sinα1vix − sin ηi sinα1viy

− cosα1viz − cosα2;

Bi = sin ηi sinα1vix − cos ηi sinα1viy;

Ci = cos ηi sinα1vix + sin ηi sinα1viy

− cosα1viz − cosα2,

(5)

where vix, viy , and viz are the components of the unit vectors
vi, i = 1, 2, 3.

The equations (3) are decoupled quadratic equations with
two roots for each Ti, resulting in eight total combinations
of possible input joint positions, referred to as the working
modes. By selecting the combination corresponding to the
roots with added square root of the discriminant (the defini-
tion of the positive direction of rotation), the coaxial SPM
will be operating in the l-l-l working mode as discussed in
[20], [23].

The computation procedure of the unique solutions for
the coaxial SPM inverse kinematics problem is outlined in
the revised Algorithm 1, that was initially formulated and
experimentally verified by the authors in [20].

Algorithm 1: Obtaining unique solution to the coax-
ial SPM inverse kinematics

Input: vi, i = 1, 2, 3, α1, α2, ηi
Output: Vector of input joint positions θ

for i← 1 to 3 do
Calculate Ai, Bi, Ci using (5) given vi, α1, and
α2;

Solve equation (3) for Ti;
Find θi using (4) and by selecting the solution
corresponding to the root with added square root
of the discriminant (for l-l-l working mode);

return θi, i = 1, 2, 3.

III. INFINITE TORSIONAL MOTION GENERATION

One of the distinct features of the coaxial SPM, compared
to other special kinematic architectures of the 3-RRR SPMs
(e.g., manipulator with coplanar actuators [13] and the Agile
Eye [24]), is the ability to perform infinite torsional motion
of the mobile platform around its normal vector as shown
in Fig. 2. In order to perform such motion, a sequence of
input joint positions (θ’s), i.e. actuator motion trajectories,
needs to be generated. This section addresses the process
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Fig. 2: Rotation of the mobile platform around its normal
vector n by an angle σ.

of generating motion trajectories for the infinite torsional
motion.

The orientation of the coaxial SPM is described by the unit
vectors vi, i = 1, 2, 3. Using this description, the rotation of
the mobile platform around its normal vector n is formulated
as the rotation of the unit vectors vi, i = 1, 2, 3, around the
same vector n, which is defined as:

n =
v1 + v2 + v3

‖v1 + v2 + v3‖
. (6)

The instantaneous orientation of the mobile platform dur-
ing the torsional motion is defined by the unit vectors vi,rot,
i = 1, 2, 3, and is calculated using the Rodrigues’ rotation
formula [25]:

vi,rot = vi cosσ + (vi × n) sinσ
+ n(n · vi)(1− cosσ), i = 1, 2, 3,

(7)

where σ is an angle of the platform’s rotation measured from
the starting configuration to the resultant rotational instance
as illustrated in Fig. 2.

To generate motion trajectories for the infinite torsional
motion, a single 360◦ torsional rotation of the mobile
platform is sampled into a sequence of instances, and at
each instance the procedure for obtaining unique inverse
kinematics solution (Algorithm 1) is implemented. As the
result, the sequence of input joint positions θrot leading to
the SPM torsional motion around the vector n is generated.
The infinite torsional motion of the coaxial SPM is achieved
by applying the obtained sequence θrot over and over again.
However, each subsequent rotation has to be adjusted by the
addition of an extra 360◦ (2π) to the sequence θrot once
the current rotation is completed. This condition is imposed
by Algorithm 1 that returns output values on the scale from
−180◦ (−π) to +180◦ (+π) due to the nature of arc-tangent
in (4). Therefore, each time the mobile platform passes
through the same orientation during the infinite torsional
motion it is treated in the same way by Algorithm 1 and
continuity of the input sequence is violated.

Another important issue to consider is a link surpass. It
is a situation that happens when proximal links have to pass
through each other to reach specific orientation. For example,
the input position θ =

[
160◦, 160◦, 190◦

]T
is obtained from

Algorithm 1 as θ =
[
160◦, 160◦,−170◦

]T
, which, if applied

to the actuators, will force the proximal link 3 to rotate in
the opposite direction with respect to the remaining proximal
links, thus, resulting in a link collision. Realizable in some
computer simulations but not with the physical prototype
this type of input positions has to be accounted and adjusted
by the addition of an extra 360◦ (2π) to the link with the
negative input position, ensuring only a positive direction of
rotation.

IV. CONFIGURATION SPACE OF THE COAXIAL SPM
This section describes the numerical method used for

computing the space of feasible configurations of the coaxial
SPM, taking the infinite torsional motion of the manipulator
into account.

A. Singularity Detection

During the motion of the manipulator, it is desirable
to avoid singular and near-singular configurations as they
degenerate its controllability. For this purpose, a conditioning
index ζ(J) ∈ (0, 1) is widely used as an indicator, where J
denotes a Jacobian matrix of the SPM. A value of ζ(J) close
to 0 corresponds to a near-singular configuration, while ζ(J)
equal to 1 coincides with a non-singular configuration. A
threshold value ζ(J)min can be used to differentiate between
near-singular and non-singular configurations.

The reader is referred to [22] for the concise description of
the singularity analysis of the general SPM, which includes
the derivation of ζ(J). In [20] the authors described the
approach for obtaining unique forward kinematics solution
required in [22] to obtain the unit vectors wi and vi,
i = 1, 2, 3, given a vector of input joint positions θ.

For a sampled rotational motion of the mobile platform
around its normal vector, the conditioning index ζ(J) is
calculated at each instance. If any of ζ(J) values during the
rotation is below ζ(J)min, this rotational motion is treated
as not singularity-free and, therefore, is neglected.

B. Link Collision Detection

Some configurations of the coaxial SPM lead to link colli-
sions. In order to detect such configurations, a widely utilized
by robotics community free access robot simulator software
CoppeliaSim (former V-REP) [26] is used as detailed in
[27]. It allows physical simulation of parallel manipulators
and their motion control through a remote API client from
external environments such as MATLAB and ROS. The sim-
ulator has a built-in collision detection module that signals
the remote client about a link collision occurrence during
a simulated manipulator motion. During the simulation, the
collision state of each registered collision object can then
be visualized with a different coloring. Collision check
routing is repeated for each rotational instance. If any of
the manipulator’s link collide during the torsional motion,
this motion is treated as not safe and, thus, is neglected.

C. Space of Feasible Configurations

Combining the procedures outlined in the previous subsec-
tions, it is possible to numerically determine if a given con-
figuration θ of the coaxial SPM is feasible or not. Unfeasible



configurations are the ones that lead to a singularity or near-
singularity, or the ones that cause link collisions. A space
of feasible configurations for the coaxial SPM is generated
by iterating through a 3D grid of all possible configurations
and verifying whether they are feasible or not. A uniform
sampling is employed for the simplicity, i.e. δ , θi,j+1−θi,j
is constant.

For the reduction of the amount of computations, it is
reasonable to exclude configurations which lead to the link
surpass (Section III), as no real-world manipulator is able
to perform such motions. Link surpass happens when an
actuated joint position is greater than that of the next joint in
the positive (clockwise) direction of movement, i.e. θ3− θ2,
θ2 − θ1, or θ1 − θ3 should not be greater than 120◦ (the
thickness of links is ignored). The remaining set is then
analyzed for feasibility. As the result of this procedure,
a set V is created. It represents the union of all nodes
corresponding to feasible configurations of the coaxial SPM.

V. RESULTS AND DISCUSSION

Numerical verification of the proposed approach for in-
finite torsional motion generation is conducted using a
example model of the coaxial SPM with the following
geometrical parameters: α1 = 45◦, α2 = 90◦, and β = 90◦.
The model was designed in Solidworks 3D CAD software
(www.solidworks.com) and is presented in rendered
form in Fig. 3a. A simplified version of the model was
imported to CoppeliaSim (V-REP) robot simulator (Fig. 3b),
where it was used for the link collision detection procedures
[27]. MATLAB (www.mathworks.com) was used as the
remote API client for the SPM motion control and collision
data recording, as well as singularity detection calculations.

A. Computation of the Space of Feasible Configurations

The space of feasible configurations was computed by
verifying whether a given vector of input joint positions
θ would result in a singular or near-singular configuration
or lead to a link collision of the manipulator. A set of
uniformly-sampled input configurations θ between 0◦ and
360◦, with spacing δ = 5◦ was used for the numerical
computation of the space (a total of 373,248 test nodes).
Initially the set of SPM configurations shown in Fig. 4a was
obtained after excluding configurations that resulted in link
surpass. All nodes in this test set were then passed through
the singularity detection procedure with the threshold value
of the conditioning index ζ(J)min = 0.2. As a result,
the remaining nodes were separated into several subsets,
belonging to the different assembly modes of the manipulator
as shown in Fig. 4b (cross-sectional view in the middle of the
diagonal axis). The configurations that passed the singularity
check then were tested for link collisions and the final set
of feasible configurations V of the coaxial SPM model was
obtained as shown in Fig. 4c.

The obtained set V spans diagonally from θ =[
0◦, 0◦, 0◦

]T
to θ =

[
360◦, 360◦, 360◦

]T
with the deviation

of each joint input angle not greater than 100◦. This result
dictates that given the two fixed actuators with the same

(a) (b)

Fig. 3: A 3D CAD model (a) and a simulation model (b) of
the coaxial SPM.

input positions, the third one cannot exceed ±100◦ from
that value; otherwise the manipulator links will collide. This
value is specific for the given coaxial SPM model. Moreover,
the obtained set V is not limited by 0◦ and 360◦ on the
main diagonal, but extends infinitely in positive and negative
directions. This result confirms that the manipulator under
study is capable of the infinite torsional motion.

B. Infinite Torsional Motion Generation

Consider the case of infinite torsional motion generation
of the coaxial SPM mobile platform with the orientation
described as:

v1 =
[
−0.8905, 0.1896, −0.4136

]T
;

v2 =
[
0.4129, −0.9058, −0.0953

]T
;

v3 =
[
0.4722, 0.7160, 0.5096

]T
.

(8)

Rotational instances of these unit vectors vi,rot, i = 1, 2, 3,
are calculated by applying (7). The sequence of input joint
positions is then generated by applying Algorithm 1 at
each rotational instance. Imposing the computed input joint
positions to the coaxial SPM model in CoppeliaSim robot
simulator, following the procedure outlined in Section III,
results in the infinite torsional rotation of the manipulator
as shown in Fig. 5 for six subsequent input joint position
instances. The video demonstration of the simulated infinite
torsional motion of the coaxial SPM model is available at
the author’s research lab web-site www.alaris.kz.

Figure 6 presents time evolutions of the three input joint
rates of change applied to the coaxial SPM model for
realizing its torsional motion in Fig.5. It is seen that all the
input joint rates of change are periodic and identical with
120◦ phase shifts between each other. This implies that only
one input joint trajectory can be generated; the remaining
input trajectories are obtained by adding 120◦ and 240◦

phase shifts.
Figure 7 demonstrates the generated helix-shaped manipu-

lator input joint trajectory lying inside the space of joint fea-
sible configurations of the coaxial SPM model, expanded in
both directions of rotation, thus confirming that the complete

www.solidworks.com
www.mathworks.com
www.alaris.kz


(a) (b) (c)

Fig. 4: Estimation process of the space of feasible configurations: (a) set of nodes with no link surpass, (b) set of singularity
free nodes (cross-section view), (c) set of singularity and link collisions free nodes (cross-section view).

(a) σ = 0◦ (b) σ = 60◦ (c) σ = 120◦ (d) σ = 180◦ (e) σ = 240◦ (f) σ = 300◦

Fig. 5: The coaxial SPM rotational instances about normal vector n.
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Fig. 6: Input joint rates of change of the coaxial SPM model.

360◦ torsional rotation is realizable in this example case.
However, in certain other orientations of the coaxial SPM
model, the part of the input joint motion trajectory could
exceed the computed feasible joint workspace, indicating
that the infinite torsional motion is not possible at those
orientations.

VI. CONCLUSIONS

This paper presented a novel approach for infinite torsional
motion generation of a 3-RRR SPM with coaxial input shafts.
A revised approach for obtaining unique inverse kinematics
solutions was presented. It was used for generating input

Fig. 7: Example of the torsional motion joint trajectory of
the coaxial SPM model.

joint trajectories of the coaxial SPM, that is able to realize
infinite torsional motion within the precomputed space of
feasible configurations. The presented results of the numeri-
cal case study using the coaxial SPM simulation model veri-
fied viability of the proposed approach and revealed periodic
nature and similarities between the input joint velocities.
The reported theoretical and numerical results will be further
analyzed and utilized in real-time orientation control system
design for a physical prototype of the coaxial SPM.
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