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Abstract— This paper presents an extended approach for
computing unique solutions to forward and inverse kinematics
of a three degrees-of-freedom spherical parallel manipulator
(SPM) with coaxial input shafts and all revolute joints that
has an unlimited rolling motion property. The approach is
formulated in the form of easy-to-follow algorithms. Numerical
and simulation case studies are conducted on a novel coaxial
SPM design model demonstrating its multiple possible solutions
of the forward and inverse kinematics problems constituting
assembly and working modes of the manipulator, respectively.
It is confirmed that the proposed approach allows computing
of a unique solution corresponding to the specific assembly or
working mode of a coaxial SPM. Furthermore, a 3D printed
coaxial SPM prototype is presented in detail for experimental
verification of the performed numerical and simulation analy-
ses. The obtained results can be applied in the design of real-
time orientation control systems of coaxial SPMs.

I. INTRODUCTION

Spherical parallel manipulators (SPMs) can provide three
rotational degrees of freedom (DOFs), namely roll, pitch,
and yaw. This manipulator characteristic complemented with
high load-carrying capacity allows SPMs to be considered in
the design of robotic wrists as an alternative to the existing
solutions based on serial kinematic architecture [1]. Other
SPM applications include orienting platforms [2], haptic
devices [3], surgical tools [4], [5], rehabilitation [6], [7] and
exoskeleton systems [8].

Among numerous types of structurally different 3-DOF
SPMs that can be synthesized [9]–[13], only a few of them
have been physically implemented. The 3-RRR type SPM
shown in Fig. 1a is one of the earliest topology designs that
has been proposed and thoroughly studied [14]–[17]. It is a
three-legged SPM with all three joints in each leg being of
revolute (R) type and passing through the common center of
rotation of the manipulator’s moving platform.

One of the most explored examples of an SPM with the
existing real-world prototype is the Agile Eye mechanism
reported in [2], [18]. It is a special case of the 3-RRR SPM
topology with orthogonal joint axes. Its special geometry
parameters lead to a simplified kinematic analysis. The
theoretical workspace of the mechanism is reported to be
a pointing cone of approximately 140◦ opening with ±30◦
in torsion. A modification of the Agile Eye, the Agile Wrist,
with enhanced load-carrying capacity and reduced weight
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is proposed in [19], [20]. Other special cases of a general
3-RRR SPM with coplanar input and moving platform axes
are also considered in [21], [22].

In overall, practical deployment of the parallel robot based
devices requires designing a feedback orientation control
system that utilizes kinematic and/or dynamical models of
manipulators [23], [24]. With respect to the 3-DOF 3-RRR
SPM kinematics it is known that the forward kinematics
problem leads to a polynomial with at most eight solutions,
corresponding to different poses of the manipulator top
mobile platform for a given input joint configuration [25],
[26]. These solutions lead to very complex expressions and
generally cannot be expressed in closed-form. To address the
problem of the existence of multiple solutions, the authors
previously proposed a numerical approach for obtaining
unique forward and inverse kinematics solutions for a gen-
eral 3-DOF 3-RRR SPM shown in Fig. 1a [27], [28]. The
approach was subsequently utilized in the development of an
orientation control framework for this type of SPMs using
convex optimization techniques and experimentally verified
with the Agile Wrist SPM prototype in [29].

The SPMs discussed above provide limited ranges of
rotational motions, particularly, the rolling motion. However,
for some applications in which SPMs can be utilized, such
as active ball joints, machining tools or special purpose
orientation platforms, full 360◦ or unlimited rolling is one
the required design objectives. This design criterion can be
achieved using a special case of a general 3-RRR SPM
with coaxial input axes (hereafter - coaxial SPM). Classical
coaxial SPM kinematic structure as depicted in Fig. 1b is
presented in [30] and further analyzed in [22]. This SPM
was realized in practice in the design of a propulsor coaxial
SPM reported in [31]. However, to the authors’ knowledge,
no research works were reported publicly outlining the
underlying theoretical analysis for controlling the orientation
of the experimental prototype. Another design of a coaxial
SPM is proposed in [32]. This design uses three SPM leg
actuators sliding on a circular guide, thus, ensuring a full
twist rolling property of the manipulator. The subsequent
works [33]–[39] primarily focus on modeling, kinematic and
dynamic analyses of this SPM design. Particularly, several
approaches for SPM design optimization based on desired
workspace, dexterity, singularity or stiffness properties of
the manipulator are proposed in these papers. However, no
studies on SPM control addressing the existence of multiple
solutions to forward and inverse kinematics problems are
reported as of now. Alternative asymmetrical [40]–[42] and
hybrid (serial-parallel) [43] SPM architectures, theoretically



Fig. 1: 3-RRR SPM kinematic structures: (a) general, (b)
with coaxial input joint axes, where (1) - mobile platform,
(2) - distal link, (3) - proximal link.

ensuring unlimited roll property of the system, lead to
complicated kinematic models that make their potential prac-
tical application for real-time control difficult due to heavy
computation requirements.

In this paper, the authors extend their approach [27] for
the case of computing unique forward and inverse kinematics
solutions of 3-RRR coaxial SPM systems and demonstrate
its practical application using numerical and simulation case
studies. Furthermore, a novel design of an experimental
coaxial SPM prototype is presented in detail for experimen-
tal verification of the performed numerical and simulation
analyses.

II. KINEMATIC ANALYSIS OF A COAXIAL SPM

Kinematic analysis of the coaxial SPM originates from
that of the general SPM, which is an extensively studied
topic [16], [25], [44]. This section presents a summary of the
SPM kinematics and the approach [27] newly reformulated
for the case of the coaxial SPM.

A. SPM Kinematic Model and Coordinate System

Figure 1a demonstrates kinematic model of a general
3-DOF 3-RRR SPM, consisting of two triangular pyramid-
shape platforms with the lower one being the base, and the
upper one being the mobile platform. The mobile platform
undergoes a 3-DOF spherical motion and rotates about a
fixed point of the intersection of the pyramids’ axes referred
to as the center of rotation. The geometry of the regular
triangular pyramids is defined by angles γ and β. The
mobile platform is connected to the base through three
equally-spaced legs numbered as i = 1, 2, 3 in the clockwise
direction, each of them composed of two curved proximal
(lower) and distal (upper) links. Angles α1 and α2 define
the curvature of these links, respectively. The axes of the
base, intermediate, and platform joints intersect at the center
of rotation and are defined by unit vectors ui, wi, and vi,
respectively, directed from the center of rotation towards
respective joints.

In the case of a coaxial SPM angle γ = 0◦, which de-
generates the base pyramid to a single line, and thus forcing

Fig. 2: Positive direction of the actuated joint angles with
respect to the coaxial SPM home configuration (shown as
transparent).

the base joints, i.e. actuated (or input) joints, to be coaxial
as demonstrated in Fig. 1b. Simultaneous or coordinated
rotation of the actuated joints provides unlimited roll rotation
property of the coaxial SPM around an arbitrarily oriented
axis of rotation of the manipulator top mobile platform.

The stationary right-handed orthogonal coordinate system
with its origin located at the center of rotation is shown
in Fig. 1b. The z-axis is normal to the base and is directed
upwards, while the y-axis is located in the plane generated by
the z-axis and a center vertical plane of proximal link 1 at its
home configuration position. The x-axis is determined by the
right-hand rule. The home configuration of the coaxial SPM
is chosen such that all three proximal links are located 120◦

apart. In this case, the SPM mobile platform is horizontal
and its normal vector coincides with the positive z-axis.
Input joint positions constituting vector θ ,

[
θ1, θ2, θ3

]T
are

measured from the planes defined by the z-axis and unit
vectors wi, i = 1, 2, 3 at SPM’s home configuration to the
planes of proximal links of the corresponding SPM legs with
the counterclockwise direction being the positive direction as
illustrated in Fig. 2. At the home configuration, the vector
of input joint positions is set to θ =

[
0, 0, 0

]T
.

Under the prescribed coordinate system, unit vectors ui,
i = 1, 2, 3, of the SPM base joints are defined as follows:

ui =
[
0, 0,−1

]T
. (1)

Unit vectors wi, i = 1, 2, 3 of the SPM intermediate joints
can be expressed as the simplified case of that from [32]
with γ = 0◦:

wi =

sin(ηi − θi) sinα1

cos(ηi − θi) sinα1

− cosα1

 , (2)

where ηi = 2(i− 1)π/3, i = 1, 2, 3 [16].
At the home configuration, the intermediate joint vectors

depend only on the α1 design parameter and take the



Algorithm 1: Unique coaxial SPM forward kinemat-
ics solution

Input: θ, α1, α2, β, x0, ηi, i = 1, 2, 3
Output: Unique vectors vi, i = 1, 2, 3

Calculate α3;
for i← 1 to 3 do

Calculate wi using (2) given θ;
Calculate vi, i = 1, 2, 3, by numerically solving the
system of equations (4), given wi, i = 1, 2, 3, with
initial guess vector x0;

return vi, i = 1, 2, 3.

following form:

w1 =
[
0, sinα1, − cosα1

]T
,

w2 =
[√

3
2 sinα1, − 1

2 sinα1, − cosα1

]T
,

w3 =
[
−
√
3
2 sinα1, − 1

2 sinα1, − cosα1

]T
.

(3)

B. Unique Forward Kinematics

The forward kinematics of the coaxial SPM defines the
orientation of the mobile platform described in terms of
unit vectors vi given the actuated joint position vector θ.
In this case, both ui and wi are assumed to be known a
priori. Each unit vector of vi contains x, y, and z components
summing up to 9 unknown parameters in total. A system of
9 independent equations can be derived based on the SPM
geometric constraints:

wi · vi = cosα2, i = 1, 2, 3,

vi · vj = cosα3, i, j = 1, 2, 3, i 6= j,

‖vi‖ = 1,

(4)

where α3 = 2 sin−1
(
sinβ cos π6

)
is the angle between axes

of the ith and jth platform joints, and ‖·‖ is the Euclidean
norm.

The system of equations (4) consists out of three linear and
six quadratic equations of unit vectors vi, i = 1, 2, 3. Typi-
cally, such system cannot be solved analytically and explicit
equations cannot be derived. It can be solved numerically
with the initial guess vector x0. The values of this vector
are the initial guesses of x, y, and z components of vi:

x0 =
[
v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z

]T
. (5)

The absolute values of the initial guess vector can be
chosen arbitrarily since iterative numerical methods normally
converge even if initial values are far from the solution. On
the other hand, the signs of the values are important and
dependent on the accepted reference frame. By changing the
signs of the vi guess values all eight possible solutions of
the coaxial SPM forward kinematics problem can be found.
They are referred to as the assembly modes [45]. Availability
of several solutions is guaranteed since for any position of a
proximal link there exist two directions for placing the distal
link of the same SPM leg.

To obtain the unique solution of the coaxial SPM forward
kinematics problem, the signs of the x, y and z components
of vi, i = 1, 2, 3 at the home configuration are used in the
initial guess vector. Hence, the unique kinematics solution is
considered to be in the same assembly mode as the coaxial
SPM initial configuration and will correspond to the physical
prototype of the manipulator.

Following [27] a numerical algorithm for computing
unique solution to the forward kinematics problem can be
adopted as presented in Algorithm 1. The forward kinematics
numerical example in Section IV demonstrates the applica-
tion of the method using a specific initial guess vector x0

corresponding to the chosen SPM assembly mode.

C. Unique Inverse Kinematics

The inverse kinematics problem is defined by computing
the actuated joint position vector θ corresponding to a given
orientation of the SPM top mobile platform defined by unit
vectors vi, i = 1, 2, 3. Inverse kinematics solutions are
defined by the three uncoupled equations for each actuated
joint positions θi, i = 1, 2, 3, as follows [16]:

AiT 2
i + 2BiTi + Ci = 0, i = 1, 2, 3, (6)

with

Ti = tan

(
θi
2

)
. (7)

The coefficient functions Ai, Bi, and Ci can be simplified
from the general case presented in [16] as:

Ai = − viy sinα1 − viz cosα1 − cosα2;

Bi = vix · sinα1;

Ci = viy sinα1 − viz cosα1 − cosα2;

(8)

where vix, viy, and viz are the components of vector vi.
Equation (6) is a quadratic equation with two roots for

each Ti value obtained as solutions of the inverse tangent
function (7). Since it is a closed-form solution it can be
easily solved analytically.

For any given orientation of the coaxial SPM’s mobile
platform, two solutions exist for each SPM leg position θi,
i = 1, 2, 3, summing up to eight solutions in total, referred
to as the working modes [45].

Similarly to the forward kinematics case, Algorithm 2 is
formulated for computing the unique solution of the coaxial
SPM inverse kinematics problem.

III. EXPERIMENTAL SETUP DESIGN

The proposed kinematics computation algorithms are nu-
merically demonstrated on a coaxial SPM model with the
following geometrical parameters: α1 = 45◦, α2 = 90◦, β =
90◦, and γ = 0◦. A 3D CAD model of the coaxial SPM as-
sembly corresponding to these parameters has been designed
in the Solidworks CAD software (www.solidworks.com)
and is presented in the rendered form in Fig. 3a. This model
is also used for demonstrating the working and assembly
modes of the coaxial SPM as some of it’s configurations are
not achievable with a physical manipulator prototype.

www.solidworks.com


Algorithm 2: Unique coaxial SPM inverse kinemat-
ics solution

Input: vi, i = 1, 2, 3, α1, α2

Output: Actuated joint position vector θ

for i← 1 to 3 do
Calculate Ai, Bi, Ci using (8) given vi;
Solve equation (6) for Ti;
Find θi using equation (7) and positive roots of
equation (6);

return θi, i = 1, 2, 3.

(a) (b) (c)

Fig. 3: A 3D CAD design (a), VREP simulation model (b)
and experimental 3D-printed prototype (c) of a coaxial SPM.

The motion simulation of the coaxial SPM model has
been conducted in the V-REP 3D robot physical simulation
software (www.coppeliarobotics.com) by importing the
SPM CAD model to the program as shown in Fig. 3b.
V-REP is one of the few robot physics simulation en-
vironments that allows motion analysis of parallel robot-
manipulators using a number of internal computational tools
including robot inverse kinematics, link collision detection
and others. In addition, it provides API for external con-
trol of the model from MATLAB computation environment
(www.mathworks.com) utilized for numerical analysis.

For experimental validation of the presented unique
kinematic analysis approach the coaxial SPM CAD
model has been manufactured using 3D printing tech-
nology and assembled to build a physical prototype
as presented in Fig. 3c. The prototype dimensions are
L 230 mm x W 230 mm x H 283.4 mm (bounding box at
the home configuration). Coaxial joints actuation is per-
formed by three ROBOTIS Dynamixel MX-106 servomo-
tors (http://en.robotis.com/) fixed on the SPM base
platform in a circular arrangement being equally distributed
with 120◦ between each other as shown in Fig. 4. The
central vertical planes of the actuators are coincident with
that of the corresponding proximal links, i.e. actuator 1 and
proximal link 1 central planes, at the home configuration. The
actuators are controlled from MATLAB using Dynamixel
SDK (Protocol 2.0) API.

Actuator torques are transferred to proximal link gears
with ratio 1:1 as detailed in Fig. 4 (the cross-section view

base

motor 1

actuating gear 1

link gear 1

proximal link 1

Fig. 4: Coaxial SPM prototype gear transmission.

is presented for easier visual perception of the reader). Link
gear 1 is mounted into the base through thrust ball bearings
to support the axial load, whereas rolling bearings are added
in addition to smooth shafts’ rotation. Further, a hollow link
gear 2 is placed on top of link gear 1 followed by link
gear 3. 3D printed thrust ball bearings are integrated into
the structure of link gears (not shown) to avoid dry friction
between them. A pair of ball bearings is also used in each
intermediate and mobile platform joints for smoother motion.

IV. RESULTS AND DISCUSSION

Let’s consider the forward kinematics case of the coaxial
SPM model with θ = [75◦, 90◦, 65◦]T . To determine the
resulting orientation of the coaxial SPM mobile platform, i.e.
to compute unit vectors vi, i = 1, 2, 3, firstly all unit vectors
ui, and wi are obtained using (1) and (2), respectively:

u1 =
[
0, 0, −1

]T
,

u2 =
[
0, 0, −1

]T
,

u3 =
[
0, 0, −1

]T
,

w1 =
[
−0.6830, 0.1830, −0.7071

]T
,

w2 =
[
0.3536, 0.6124, −0.7071

]T
,

w3 =
[
0.0616, −0.7044, −0.7071

]T
.

(9)

Subsequently, unit vectors vi can be calculated from (4)
as follows:

−0.6830v1x + 0.1830v1y − 0.7071v1z = 0

0.3536v2x + 0.6124v2y − 0.7071v2z = 0

0.0616v3x − 0.7044v3y − 0.7071v3z = 0

v1x · v2x + v1y · v2y + v1z · v2z = 0

v1x · v3x + v1y · v3y + v1z · v3z = 0

v2x · v3x + v2y · v3y + v2z · v3z = 0

v 2
1x + v 2

1y + v 2
1z = 1

v 2
2x + v 2

2y + v 2
2z = 1

v 2
3x + v 2

3y + v 2
3z = 1.

(10)

The above system of equations leads to eight SPM kine-
matic solutions presented in Table I. These solutions corre-
spond to eight different coaxial SPM postures, defined by

www.coppeliarobotics.com
www.mathworks.com
http://en.robotis.com/


(a) (b)

Fig. 5: Snapshot of the experimental testing with the coax-
ial SPM experimental prototype (a) and V-REP simulation
model (b) at configuration defined by θ = [75◦, 90◦, 65◦]T .

various possible initial assembly modes of the manipulator,
as illustrated in Fig. 6. Particularly, during the manipulator
assembling process each distal link can be aligned to the
left (clockwise) or the right (counterclockwise) before being
attached to the top mobile platform. Postures with all distal
links rotated in the same direction, i.e. left-left-left (l-l-l) or
right-right-right (r-r-r), are more convenient as they provide
symmetry and make visual perception easier. In this work,
the l-l-l posture is selected as the assembly mode for the
designed coaxial SPM model and prototype.

The system of nonlinear equations (10) has been numeri-
cally solved in MATLAB using function fsolve with the
initial guess vector as below:

x0 =
[
1, −1, 1, −1, −1, 1, −1, 1, 1

]T
. (11)

The absolute values of x0 in (11) are chosen arbitrarily,
whereas the sequence of signs is adopted from the orientation
of vectors vi, i = 1, 2, 3, at the SPM home configuration.

As a result, the orientation of the coaxial SPM top mobile
platform corresponding to the given actuated joint position
vector θ is found in terms of unit vectors vi:

v1 =
[
0.2348, 0.9717, 0.0247

]T
,

v2 =
[
0.6966, −0.6769, −0.2379

]T
,

v3 =
[
−0.9316, −0.2948, 0.2125

]T
.

(12)

This solution corresponds to the l-l-l posture shown in
Fig. 6a generated using the SolidWorks CAD software and
summarized in the form of unit vectors vi, i = 1, 2, 3 in the
first row of Table I.

The solution obtained above and several other arbitrary
chosen and similarly computed unique forward kinemat-
ics solutions have been experimentally verified using the
V-REP SPM simulation model and the experimental pro-
totype. Figure 5 presents a snapshot of the test with the
V-REP SPM model and the prototype after applying input
position vector θ = [75◦, 90◦, 65◦]T . It is clear from the
figure that the SPM simulation model and the prototype
coincide with the numerically computed unique forward

kinematics solution (12) corresponding to the SPM model
graphical posture given in Fig. 6a. The conducted tests
demonstrated that the robot prototype has always rotated to
the specific postures corresponding to the given input joint
position vectors provided that singularity or link collision
configurations were avoided during motion from the home to
final postures of the manipulator. Thus, the proposed numer-
ical approach was confirmed experimentally and, therefore,
Algorithm 1 outlined in Section II can be used for computing
a unique forward kinematics solution that corresponds to a
particular SPM assembly mode. The accompanying video
demonstration is available at the author’s research lab website
www.alaris.kz.

The unique inverse kinematics solution for a given coaxial
SPM orientation can be obtained by following Algorithm 2
presented in Section II-C. Assuming that unit vectors vi,
i = 1, 2, 3 are given in the form of equation (12), coefficients
Ai, Bi, and Ci are calculated in MATLAB using (8) and
substituted into (6):

−0.7046T 2
1 + 2 · 0.1661T1 + 0.6697 = 0;

0.6468T 2
2 + 2 · 0.4926T2 − 0.3104 = 0;

0.0582T 2
3 − 2 · 0.6588T3 − 0.3587 = 0.

(13)

There exist eight different solutions to these equations
given two possible position values for each actuator. The
inverse kinematics solutions are calculated in terms of actu-
ated joint positions θi, i = 1, 2, 3 in degrees as follows:

θ1 =

[
−77.85

75

]
, θ2 =

[
−61.68

90

]
, θ3 =

[
−89.85

65

]
. (14)

The eight possible combinations of the computed SPM
actuated joint positions result in SPM postures illustrated in
Fig. 7. As seen from the figure all SPM postures have the
top mobile platform at the same orientation defined by (12).
However, the location of the manipulator links varies due to
the different input joint positions. Analyzing (14) it can be
observed that the positive roots, i.e. positive actuated joint
positions θi, i = 1, 2, 3, are equal to the input joint position
vector θ = [75◦, 90◦, 65◦]T corresponding to the initially
given SPM posture described by (12), which, in turn, was
calculated previously in the unique forward kinematics case
study.

It can be observed that some of the postures shown in Fig.
6 and Fig. 7 are in physical interference state. These con-
figurations can be eliminated with adding the link collision
detection routine as was proposed in [28] for computing the
feasible joint workspace of SPMs with revolute joints.

V. CONCLUSIONS

This paper has described in detail the approach for com-
puting unique forward and inverse kinematics solutions of
a coaxial SPM with revolute joints aiming at further appli-
cation in designing manipulator real-time control systems.
The correctness of the approach has been analyzed using
numerical and simulation case studies with a newly designed
3D CAD model of a coaxial SPM. Furthermore, experimental

www.alaris.kz


(a) l-l-l posture (b) l-l-r posture (c) l-r-l posture (d) l-r-r posture

(e) r-l-l posture (f) r-l-r posture (g) r-r-l posture (h) r-r-r posture

Fig. 6: Eight postures (assembly modes) of the coaxial SPM model corresponding to θ = [75◦, 90◦, 65◦]T .

(a) l-l-l posture (b) l-l-r posture (c) l-r-l posture (d) l-r-r posture

(e) r-l-l posture (f) r-l-r posture (g) r-r-l posture (h) r-r-r posture

Fig. 7: Eight postures (working modes) of the coaxial SPM model corresponding to vix, i = 1, 2, 3 given in (12).



TABLE I: Eight forward kinematics solutions of the coaxial SPM model with θ = [75◦, 90◦, 65◦]T .

No. vT1 vT2 vT3

1 (l-l-l) [0.235, 0.972, 0.025] [0.697,−0.677,−0.238] [−0.931,−0.295, 0.213]

2 (l-l-r) [−0.551, 0.506, 0.663] [−0.447,−0.554,−0.703] [0.998, 0.048, 0.039]

3 (l-r-l) [0.728, 0.249,−0.639] [−0.895, 0.442,−0.064] [0.167,−0.691, 0.703]

4 (l-r-r) [0.282, 0.959,−0.024] [−0.696,−0.333,−0.636] [0.414,−0.626, 0.660]

5 (r-l-l) [−0.282,−0.959, 0.024] [0.696, 0.333, 0.636] [−0.414, 0.626,−0.660]

6 (r-l-r) [−0.728,−0.249, 0.639] [0.895,−0.442, 0.064] [−0.167, 0.691,−0.703]

7 (r-r-l) [0.551,−0.506,−0.663] [0.447, 0.554, 0.703] [−0.998,−0.048,−0.039]

8 (r-r-r) [−0.235,−0.972,−0.025] [−0.697, 0.677, 0.238] [0.931, 0.295,−0.213]

verification of the results has been performed using a physi-
cal prototype of the coaxial SPM model manufactured using
3D printed technology. It can be concluded that the provided
coaxial SPM model design description and numerical case
studies allow straightforward reproduction of the presented
results for the case of coaxial SPMs with other geometries.

As future work, the authors plan to extend the pre-
sented unique kinematics analysis to feasible manipulator
workspace computation, i.e. without singular and physically
unattainable configurations, and thorough analysis of the
unlimited rolling property of coaxial SPMs.
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