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Abstract

This paper presents the design of a Model Predictive Control (MPC) scheme to optimally manage the thermal and electrical sub-
systems of a small-size building (“smart house”), with the objective of minimizing the expense for buying energy from the grid,
while keeping the room temperature within given time-varying bounds. The system, for which an experimental prototype has been
built, includes PV panels, solar collectors, a battery pack, an electrical heater in a thermal storage tank, and two pumps on the solar
collector and radiator hydraulic circuits. The presence of binary control inputs together with continuous ones naturally leads to
using a hybrid dynamical model, and the MPC controller solves a mixed-integer linear program at each sampling instant, relying
on weather forecast data for ambient temperature and solar irradiance. The procedure for controller design is reported with focus
on the specific application, and the proposed method is successfully tested on the experimental site.

Keywords: Model predictive control (MPC), Hybrid model predictive control (HMPC), Building control, Temperature control,
Energy management systems.

1. Introduction

The use of various advanced control schemes, and in partic-
ular Model Predictive Control (MPC), has been recently pro-
posed to improve the thermal e�ciency of buildings beyond
that obtainable with traditional methods [1, 2]. The general idea
behind MPC for building control is to use a thermal model of
a building and future temperature set points, possibly together
with the forecast of weather and future energy prices, to predict
the evolution of the system variables in real time. A control
action is computed to minimize a cost function depending on
the predictions, while satisfying given operational constraints.
Even though the prediction typically spans over several hours,
the control law is recomputed within short time intervals, typi-
cally from a few minutes to one hour.

In recent years, MPC has been employed for building heat-
ing and cooling systems, based on deterministic and stochastic
models in, among others, [3–9] and [10–12], respectively. In
some cases, a number of system variables are discrete in nature
(e.g., some actuators can only be turned on/o↵), which requires
the use of the so-called hybrid MPC approach [13–18]. In all
the cited works, the aim is to provide a certain level of com-
fort to the occupants (e.g., for heating systems, impose lower
bounds on room temperatures), while minimizing the energy
consumption or the total cost of energy.

IThe first four authors contributed equally. The work was coordinated by
M. Rubagotti, a�liated with Nazarbayev University during the preliminary part
of the project activities.
⇤Corresponding author: M. Rubagotti. Email mr298@le.ac.uk, tel. +44-

(0)116-233-1761, fax: +44-(0)116-252-2619.

On the other hand, MPC is also increasingly used for the
optimal schedule of energy sources in di↵erent application do-
mains, such as hybrid electric vehicles [19, 20]. The use of
MPC for overall energy management of buildings, where the
thermal management is considered as one of many factors, has
been analyzed, for instance, in [21]. One of the current trends
is to use large-scale models of all the energy sources and the
loads in buildings (including, for instance, charging of plug-in
hybrid electric vehicles) in order to minimize the overall energy
consumption [22–24].

In this paper, we propose a hybrid MPC control strat-
egy applied to a prototype small-size building (referred to as
“smart house” in the remainder of the paper) built inside the
Nazarbayev University campus (Fig. 1). The goal is to keep
the room temperature within given time-varying boundaries, at
the same time managing the electrical and thermal storage, with
the aim of minimizing the expense for buying electricity from
the grid. Indeed, a building that draws less power from the
grid contributes to reduce both the overall energy production
from centralized power plants, and the load on the power distri-
bution network, to which a continuously increasing number of
residential and industrial consumers are being connected. This
is particularly important in developing countries such as Kaza-
khstan, which are aiming at decreasing their dependence on fos-
sil energy sources. In any realistic scenarios, it is important to
evaluate the time needed for depreciation of the equipment in
order to determine the advantages and/or disadvantages of the
proposed solution. These will depend, among other factors, on
the climate of the specific location, and on the prices of equip-
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ment and electricity from the grid. In turn, these factors depend
on the specific country and geographic area where the building
is situated, and on the energy policies of the country itself. All
these considerations should be taken into account during the
design of the smart house: in this paper, on the other hand, we
consider how to optimize the system behavior in real-time, after
the design process has been completed.

The energy-management approach presented in this paper re-
quires first to obtain a control-oriented state-space dynamical
model of the system, based on real data from the experimental
site. The presence of binary control variables (pumps, electrical
load powered from the grid or from the battery pack) makes the
process a hybrid dynamical system. For this reason, the pro-
posed MPC control law requires solving a mixed-integer opti-
mization problem online. In particular, this consists of a mixed-
integer linear program (MILP), formulated following the ideas
proposed in [25].

(a)

(b) (c)

Figure 1: (a) exterior of the smart house, including PV panels and solar col-
lectors; (b) interior, including control computer, battery pack and charge con-
troller; (c) interior, including thermal storage tank and pumps

The paper is structured as follows: Section 2 introduces the
modeling of the smart house as a hybrid system, while Section
3 describes the design of the MPC controller. The experimen-
tal results and their discussion are presented in Section 4, and
conclusions are drawn in Section 5.

The contribution of this paper consists of the proposal and
experimental implementation of a strategy for the optimal man-
agement of batteries, renewable energy sources, and thermal
storage elements at the same time, for a prototype small-size
residential building. A preliminary version of the method pro-

posed in this paper can be found in [26], where an early version
of the described control strategy was presented, and tested only
in simulation.

Nomenclature

A, B1, . . . , B4 MLD model matrices

cc f cloud coe�cient

c1, . . . , c19 model parameters

d, d̂ measured/forecast vectors of uncontrolled inputs

Ee, Êe measured/forecast solar irradiance [W/m2]

Êecs forecast clear-sky solar irradiance [W/m2]

k discrete time index

Jt,n total electricity cost from time t for n sampling instants

ipv current generated by the PV array [A]

N prediction horizon

Pa power drawn by the applicances [W]

Pc power drawn by the collector pump [W]

Pr power drawn by the radiator pump [W]

Pres power drawn by the auxiliary heater (resistor) [W]

Ptot overall power consumption [W]

Ptotgrid power consumption from grid [W]

qe electricity price [KZT/kWh]

qe,d day electricity price [KZT/kWh]

qe,n night electricity price [KZT/kWh]

SoC battery state of charge [%]

uc collector pump on/o↵ control signal {0,1}
ugrid transfer switch on/o↵ control signal {0,1}
ur radiator pump on/o↵ control signal {0,1}
ures resistor control signal (duty cycle) [0,1]

Tamb, T̂amb measured/forecast ambient temperature [�C]

Tc,out collector outlet temperature [�C]

Tlb,k lower bound on Troom at time k [�C]

Tr,out radiator outlet temperature [�C]

Tub,k upper bound on Troom at time k [�C]

Tw temperature of the fluid in the tank [�C]

Troom room temperature [�C]

Ts sampling interval (= 20) [min]

u vector of control variables

u MPC control sequence

u⇤ optimal MPC control sequence

U set of control constraints

x vector of state variables

2
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Xk set of state constraints at time k

z vector of auxiliary variables

↵ proportionality coe�cient between Ee and ipv [Am2/W]

� constant (= 10�3Ts/60) [Am2/W]

2. Hybrid modeling of the smart house

2.1. Description of the experimental facility

The prototype smart house (Figs. 1-2) is composed of two
rooms, with a total volume of 84 m3. Walls, floor and roof
are made of three-layer frameless sandwich-type wall panel,
thermally insulated with basalt fiber (thickness: walls 100 mm,
roof and floor 150 mm). A stack of lead-acid batteries (eight
batteries E↵ekta BTL 12-200), charged by PV panels (14 so-
lar modules Alfasolar Pyramid 60P/250), powers the electrical
load. This consists of two pumps (on the hydraulic circuits of
the solar collector and of the radiator, whose drawn power is
referred to, respectively, as Pc = Pr = 300 W) and an auxil-
iary heater (resistor) in a 200-litre thermal storage tank (drawn
power Pres = 2000 W). The pumps can be either switched on
or o↵ by the control system: uc 2 {0, 1} determines whether
the collector pump is on (uc = 1) or o↵ (uc = 0), and similarly
ur 2 {0, 1} for the radiator pump. On the other hand, ures 2 [0, 1]
is a continuous variable representing the percentage of time in
each sampling interval in which the resistor is powered (duty
cycle): if ures = 0 the coil is o↵, if ures = 1 the coil is on full
power, and all intermediate values are allowed. Although this
variable is binary in nature, converting it to a continuous one
by using a duty cycle simplifies the control problem as com-
pared to the preliminary approach of [26]. In addition to pumps
and resistor, the system behavior is influenced by the power Pa
drawn by the appliances, which include the control computer.
In the scenarios studied in this paper, it is assumed that the load
demand of the appliances is constant over time, and precisely
Pa = 300 W. Considering a sampling interval Ts = 20 minutes
in which the values of the control variables remain constant, the
average overall power consumption Ptot [W] is obtained as

Ptot = Pcuc + Prur + Presures + Pa. (1)

The electrical connections are such that the battery pack has a
total capacity Q = 800 Ah and a nominal voltage Vb = 24 V,
and the common PV-Battery DC-bus is connected to an inverter.
The load can be powered directly from the electrical grid or
from the inverter via a transfer switch in the inverter switchgear,
whose behavior is described by the binary variable ugrid 2 {0, 1}:
when ugrid = 0 the energy to the load is supplied from the bat-
tery pack and/or the PV array, while when ugrid = 1 the load
is connected to the grid. The model of the electrical subsystem
required for MPC design aimes at describing the dynamics of
the battery state of charge SoC [%] (monitored by the charge
controller Power Tarom Steca 2070SC).

Although most electrical components (PV panels, batteries,
and power converters) are nonlinear in nature, at a given op-
erating mode and under standard assumptions, a linear model
can represent an approximation of the actual behavior su�cient
for control design: indeed, the proposed hybrid MPC control
law will require a dynamical model including only linear or
on/o↵ components. The following conditions, already formu-
lated in [26], are assumed: (a) the discharge power capability
of the battery pack is much greater than the maximum output
power of the PV array (implying that the voltage of the DC bus
is imposed by the state of charge of the battery pack); (b) the
useful energy (i.e., total energy ⇥ depth of discharge) can be
extracted from the battery pack in an interval of state of charge
values for which the terminal voltage of the battery pack can
be approximated as constant. Thus, the battery voltage can be
approximated as constant for any rate of discharge if the state
of charge does not become too low. Under these assumptions,
the output current ipv [A] generated by the PV array is approx-
imately linearly proportional, by a constant ↵, to the solar ir-
radiance Ee [W/m2] for a constant voltage at the PV terminals,
as confirmed observing the V-I curves in the data sheet of the
PV array [27]. In order to find the value of ↵, the value of ipv
generated by the PV array has been measured, together with the
solar irradiance Ee during normal operation of the system. As a
result, by linear regression we obtained the relation

ipv = ↵Ee, ↵ = 0.1218 Am2/W. (2)

Figure 2: Schematic diagram of the smart house system

The storage tank can be heated by either the auxiliary heater
or the solar vacuum collector, consisting of 20 vacuum heating
tubes filled with propylene glycol. In order to obtain a lumped-
parameters model useful for control design, the temperature of
the evacuated tubes is defined as the average of Tc,out and Tc,in,
which are the outlet and inlet temperatures, respectively, of the
solar collector. The heat capacity of the heating elements inside
the thermal tank has been observed to be much smaller than
that of the fluid flowing inside them: thus, it is assumed that all
power supplied to the heating elements of the heat exchangers

3
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goes directly into the fluid in the tank with no delay. Further-
more, the fluid inside the tank is assumed to have a uniform
temperature Tw. The temperature of the fluid inside the radi-
ator is defined as the average of Tr,out and Tr,in (i.e., the outlet
and inlet temperature of the radiator, respectively), and we as-
sume that no heat losses occur in the pipes connecting the tank
with the radiator. In order to obtain an approximated model,
simple enough for control design, the thermal subsystem was
modeled by the four state variables Tc,out, Tr,out, Tw, Troom, the
latter being the room temperature, assumed uniform. All four
state variables are measured by sensors of type PT1000RTD or
NTC10K. The external factors influencing the thermal dynam-
ics are solar irradiance Ee and ambient temperature Tamb, which
are measured by a Davis Vantage Pro weather station.

Overall, the vectors of states, control inputs, and uncon-
trolled inputs (disturbances) of the smart-house model are, re-
spectively,

x ,
h

Troom Tw Tc,out Tr,out SoC
iT
, (3)

u ,
h

ures uc ur ugrid
iT
, (4)

d ,
h

Ee Tamb
iT
. (5)

2.2. Control objective

The electricity price qe [KZT/kWh]1, although not influenc-
ing the physical variables directly, will be taken into account
by the MPC controller to determine the expense. As two-rate
tari↵s are being considered for introduction in Kazakhstan, we
take into account a realistic scenario in which

qe =

8

>

>

<

>

>

:

qe,d between 6 a.m. and 11 p.m.
qe,n between 11 p.m. and 6 a.m.

(6)

where qe,d = 105 KZT/kWh, while qe,n = 56 KZT/kWh.
Given a sequence of electricity price values qe(k) (k being the

discrete-time index) sampled with the previously-mentioned
sampling time Ts = 20 minutes, and average power consump-
tion Ptot(k), we obtain the overall expense in KZT (which the
proposed control law will aim at minimizing), for n sampling
intervals starting at time t, as

Jt,n ,
t+n�1
X

k=t

�Ptot(k)qe(k)ugrid(k), (7)

with � = 10�3Ts/60. Notice that (7) accounts for the fact that,
during the time intervals when ugrid = 0, the operational ex-
pense is equal to zero. The use of a specific tari↵ does not limit
the validity of the proposed approach, which can be applied to
any time-varying electricity price that is known a priori. In fact,
qe will be considered by the MPC controller as an external input
with known future evolution.

1The Kazakhstani Tenge (KZT), is the currency of the Republic of Kaza-
khstan.

2.3. Mathematical model of the smart house dynamics

The discrete-time model of the smart house, in which v+ rep-
resents the one-step update of a generic variable v, is

T+room = c1Troom + c2Tw + c3Tr,out + c4Tamb + c5Ee (8a)
T+w = c6Troom + c7Tw + c8(uc)Tc,out + c9(ur)Tr,out + c10ures

(8b)

T+c,out = c11(uc)Tw + c12Tc,out + c13Tamb + c14Ee (8c)
T+r,out = c15Troom + c16(ur)Tw + c17Tr,out (8d)

SoC+ = SoC + c18(Ptotgrid � Ptot) + c19Ee (8e)

where ci, i = 1, . . . , 19 are experimentally identified parame-
ters. Recalling the definition of Ptot in (1),

Ptotgrid =

8

>

>

<

>

>

:

Ptot if ugrid = 1
0 if ugrid = 0

(9)

represents the amount of power drawn from the grid.
It is important to notice that a subset of the parameters of

the thermal model changes depending on the pumps operation:
each of these parameters can take two values, depending on
either uc or ur. This is due to the fact that the heat transfer co-
e�cients between the storage tank on one side, and the collec-
tor/radiator on the other, are higher when the circulation of the
propylene glycol is enforced by the corresponding pump. All
parameters have been determined experimentally via grey-box
closed-loop system identification [28, Ch. 13], following the
same procedure described in [26, Sec. II]. The term Ptotgrid�Ptot
in (12a) can either be equal to �Ptot (when ugrid = 0) or to zero
(when ugrid = 1). Three di↵erent scenarios can occur for the
battery: (a) ugrid = 1, for which the battery is charged by the
PV panels; (b) ugrid = 0 and c18Ptot < c19Ee, in which case the
power produced by the PV panels is partially used to satisfy the
load demand, and partially to charge the battery; (c) ugrid = 0
and c18Ptot > c19Ee, meaning that the battery contributes to
powering the load, and is therefore in discharge mode. Fi-
nally, notice that the term c19Ee implies the linearity given by
ipv = ↵Ee, and the fact that the increment of SoC in one sam-
pling interval is assumed to be linearly proportional to the av-
erage value of ipv in that interval.

Hybrid systems such as (8) can be modeled by Discrete Hy-
brid Automata (DHA) [25]. This is a versatile modeling frame-
work in which continuous dynamics are expressed through lin-
ear di↵erence equations, while discrete dynamics are defined by
finite-state machines. In order to obtain a model more suitable
for the numerical computations required by the MPC controller,
a DHA can be translated into a set of linear integer equalities
and inequalities known as Mixed Logical Dynamical (MLD)
systems. In order to obtain a description of (8) in MLD form, a
vector of continuous auxiliary variables is defined as

z 2 R =
h

z1 z2 z3 z4 z5
iT
. (10)

To capture the switched linear dynamics given by the parame-
ters that change their values depending on uc and ur, the follow-
ing auxiliary real variables are defined:

4
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z1 =

8

>

>

<

>

>

:

c8,1Tc,out if uc = 1
c8,0Tc,out if uc = 0

(11a)

z2 =

8

>

>

<

>

>

:

c9,1Tr,out if ur = 1
c9,0Tr,out if ur = 0

(11b)

z3 =

8

>

>

<

>

>

:

c11,1Tw if uc = 1
c11,1Tw if uc = 0

(11c)

z4 =

8

>

>

<

>

>

:

c16,1Tw if ur = 1
c16.,0Tw if ur = 0

(11d)

z5 = Ptotgrid (11e)

where ci,1 and ci,0 are the two possible realizations of parameter
ci. Also, Ptotgrid was already formulated in the correct form to
be one of the components of z, namely z5.

Then, (8) can be re-written as follows:

T+room = c1Troom + c2Tw + c3Tr,out + c4Tamb + c5Ee (12a)
T+w = c6Troom + c7Tw + z1 + z2 + c10ures (12b)

T+c,out = z3 + c12Tc,out + c13Tamb + c14Ee (12c)
T+r,out = c15Troom + z4 + c17Tr,out (12d)

SoC+ = SoC + c18(z5 � Pcuc � Prur � Presures � Pa) + c19Ee
(12e)

or, in a more compact form

x+ = Ax + B1u + B2z + B3d + B4 (13)

where A 2 R5⇥5, B1 2 R5⇥4, B2 2 R5⇥5, B3 2 R5⇥2, and B4 2 R5

are constant matrices. Given the current values of x, u, and d,
the time-evolution of (13) is determined by finding z from (9)
and (11), and then updating x+ in (13). A general explanation of
how to obtain the auxiliary variables and generate MLD mod-
els is described in [25]. For ease of notation, and to avoid an
excessive use of technicalities in the description of the hybrid
MPC formulation, we refer to the state evolution of system (13)
simply as

x+ = f (x, u, d) (14)

in which the presence of the auxiliary variables is not explicitly
shown.

3. Hybrid model predictive control design

The first ingredient to define the MPC controller is the model,
obtained in Section 2. Then, we define the following sets of
operational constraints:

u 2 U ,
(

ures 2 [0, 1]
uc, ur, ugrid 2 {0, 1} (15)

x 2 Xk ,

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

Troom 2 ⇥

Tlb,k, Tub,k
⇤

Tw 2 [�5�C, 80�C]
Tc,out 2 [�20�C, 120�C]
Tr,out 2 [5�C, 60�C]
SoC 2 [30%, 80%]

(16)

The constraints (15) on the controlled inputs simply ensure that
their domain of definition is enforced (e.g., pumps can either
be on or o↵, and the resistor cannot exert a negative power, or
provide more than 100% of its power). Indeed, for uc, ur and
ugrid, these constraints are implicit in their definition as binary
variables. The state constraints (16) ensure, on one hand, that
the temperatures in the di↵erent compartments of the system
allow smooth operation of the plant, avoid damaging the com-
ponents, and ensure safety for the potential occupants. On the
other hand, (16) imposes that the state of charge is kept in the
interval in which the battery pack does not get damaged. All
of these bounds are constant, apart from the lower (Tlb,k) and
upper (Tub,k) bounds on Troom, which are function of the time
instant k. More precisely,
8

>

>

<

>

>

:

Tlb,k = 20�C, Tub,k = 22�C between 7 a.m. and 10 p.m.
Tlb,k = 18�C, Tub,k = 20�C between 10 p.m. and 7 a.m.

(17)
Finally, the cost function to be minimized is related to the over-
all electricity cost Jt,n defined in (7). More precisely, given an
initial state at time k, a sequence of input variables

u =
n

u0 u1 . . . uN�1
o

(18)

over a prediction horizon of N sampling intervals, and the val-
ues of the external inputs such as Tamb, Ee, and qe over the
same prediction horizon, one can determine a value for Jt,n with
Ñ = N, with the di↵erence that here we refer to a predicted be-
havior, rather than a measured one.

The MPC control law runs as follows: at each sampling time,
the four temperatures are measured by the PT1000 RTD and
NTC10K sensors, while the state of charge is obtained from the
charge controller Power Tarom Steca 2070SC. An open-loop
optimal control problem is thus solved for the given model, con-
straints, cost function, and measured initial state, determining
the optimal sequence of future control moves

u⇤ =
n

u⇤0 u⇤1 . . . u⇤N�1

o

. (19)

These are not all applied to the process: indeed, only the first
sample u(k) = u⇤0 is actually applied, and the remaining moves
are discarded. After one sampling time, a new optimal control
problem based on new measurements is solved over a shifted
prediction horizon. This way of operating, known as “receding
horizon”, makes MPC a closed-loop control strategy.

The future evolution of the state in (14) depends on the evo-
lution of d along the prediction horizon, which in turn depends
on future weather conditions. Therefore, weather forecast data
have been used in real time, obtaining estimates of d referred to
as d̂ =

h

Êe T̂amb

iT
.

The forecast of d̂ is obtained in this work by combining (in
real time) weather forecast data from two di↵erent web sources2

together with the values measured by the weather station. While

2Data are downloaded at each sampling instant from http://

meteocenter.asia/?m=aopa&p=35188 and http://www.yr.no/place/

Kazakhstan/Astana/Astana/hour_by_hour_detailed.html.

5



Page 8 of 11

Acc
ep

ted
 M

an
us

cri
pt

the forecast of T̂amb is directly provided, the web sources do not
provide Êe, but only the so-called cloud cover, which in short
represents the percentage of sky covered by clouds in a specific
area. The estimate of the future solar irradiance is generated
as Êe = cc f Êecs, where cc f is the cloud coe�cient, and Êecs
is the value of solar irradiance under the clear-sky assumption.
Future values of Êecs are generated for the given day, time and
specific geographic coordinates, depending on several variables
(including the air mass, the height of the sun above the horizon,
the geographical latitude of the area, the angle of declination
of the sun, and the albedo) using a freely available software
[29] based, among others, on the simplified model proposed in
[30]. Regarding cc f , relying on data measured in the period
2012-2014, a polynomial function was obtained to provide its
estimate based on the cloud cover. Based on this procedure, it
was possible to obtain a prediction of d̂ to be used by MPC.

The optimal control problem to be solved at every sampling
instant can be expressed as

min
u

N�1
X

k=0

�Ptot,k · qe,k · ugrid,k (20a)

s.t.

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

x0 = x(k)
xk+1 = f (xk, uk, d̂k), k = 0, . . . ,N � 1

uk 2 U, k = 0, . . . ,N � 1
xk 2 Xk, k = 1, . . . ,N

(20b)

The first two lines in (20b) are equality constraints which en-
force the system dynamics along the prediction horizon, while
the other lines are inequality (operational) constraints. Fol-
lowing a common practice in MPC applications, the state con-
straints defined by set Xk are not enforced as hard constraints,
but rather as soft constraints: a penalty term is added in the
cost function (20a) to penalize their violation. Thus, if no fea-
sible solution is found for which all constraints are satisfied,
the MPC controller will determine the sequence that minimizes
the amount of violation of the state constraints. This approach
avoids the risk of not having any feasible solution available dur-
ing plant operation. In the results shown in Section 4, the pre-
diction horizon has been set as N = 36, which corresponds to
12 hours. The optimization algorithm is warm-started: the op-
timal control sequence u⇤ determined at the previous sampling
instant is employed to provide an initial guess for the MILP that
is currently being solved. The optimal control problem defined
in (20) is formulated with the Hybrid Toolbox [31] by express-
ing the system dynamics in MLD form, using the description
language HYSDEL [32]. The resulting MILP is solved using
the solver of the Gurobi Optimizer on the control computer,
which is a Toshiba Satellite mM840, with Processor Intel Core
i5, 4GB RAM running Windows 7. The data from sensors and
weather forecast are acquired by MATLAB R2013a via ad-hoc
interfaces. A data acquisition device NI DAQ 784 manages the
communication with the pumps and the temperature sensors,
while all other devices are directly interfaced with the control
computer. The overall communication scheme is shown in Fig.
3.

4. Experimental results

The proposed MPC control law was first tested in simulation
on the nominal model of the smart house, using real data for the
time evolution of the disturbance vector d. Preliminary simula-
tion results were presented in [26], in which ures was a binary
signal, and the actual future evolution of d was used instead of
the forecast in the MPC problem. In this work, the control sys-
tem is tested on the actual experimental site, which also implies
the use of weather forecast. Also, considering the fact that the
smart house was built internally to Nazarbayev University for
research purposes rather than being a turnkey plant provided by
an external company, the constant physical presence of an oper-
ator was required for guaranteeing the safety of the equipment
in case of malfunctioning. Therefore, the control system could
not be kept in operation for very long periods. Considering the
fact that the smart house is only equipped for heating and not
for cooling, the experiments need to be conducted when the
ambient temperature never exceeds the imposed values of the
room temperature (i.e., about 20�C), which for the city of As-
tana translates roughly to mid-September to mid-April. In the
following, the results for a period of approximately two days
(precisely, 47 hours), recorded from 12:53 a.m. on 31 March
2016, are presented.

Fig. 4 shows the evolution of the external inputs measured
from the weather station: one can notice that the first day was
sunnier and slightly colder than the second. Fig. 5 shows the
time evolution of the state variables. The value of Troom is al-
ways kept within the given boundaries during daytime, while it
slightly violates the upper boundary at night time. The slight
violation of the bound can be caused by model inaccuracies,
while the decision of keeping Troom close to its upper bound at
night is probably due to the availability of charge in the bat-
tery, also shown in Fig. 5. The value of SoC (provided by
the charge controller with a quantization of 8%, which adds
another di�culty for the MPC controller) always satisfies the
constraints introduced in (16). Finally, in Fig. 5 it is shown
that the other temperatures (Tc,out, Tr,out and Tw) are also kept
within the boundaries defined in (16). In particular, Tw is often
kept right below its upper bound of 80�C. Fig. 6 shows the
control signals. The collector pump (uc) is typically switched
o↵ in the morning, when the solar collectors have not received
enough solar irradiance and Tc,out is low: this avoids heat trans-
fer outside the house. Notice that the values reported for ures
represent the percentage ([0,1]) of time during the 20 minutes
sampling interval in which the resistor is on, as resulting from
the implemented duty cycle. In general, the pattern of the con-
trol variables is di�cult to be interpreted a posteriori, since it
depends in a non-intuitive way on the solution of (20). For this
specific case, however, the evolution of ugrid can be easily inter-
preted: due to a relatively mild weather, the battery can easily
power the load while being charged, which allows it to provide
energy at night as well. As a consequence, the MPC controller
tends not to use the grid, to minimize costs (the energy from the
battery has zero cost). However, after about 45 hours and with
a relatively low value of SoC, the controller decides to draw
energy from the grid: this is probably due to a predicted viola-
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Figure 3: Communication scheme of the smart house. The data flows of sensors and actuators are represented in blue and green, respectively.

tion of the lower bound on SoC in case the battery were used.
In case of colder days, the controller would instead impose fre-
quent changes in the value of ugrid, as shown in the simulations
in [26].

The distribution of the computation times needed to solve
(20) is shown in the histogram in Fig. 7. The solution is never
provided in less than 7.5 s, and in about 68% of the cases is
provided in a time interval between 7.5 s and 15 s. Higher val-
ues of the computation time probably correspond to cases in
which the previous solution provided for the warm start needs
to be heavily modified, due to a discrepancy between the actual
and predicted values of the states, or to a change in the weather
forecast. The computation time is capped at 120 s (i.e., 10% of
Ts): if no optimal solution is provided at this point, the current
sub-optimal solution is used to determine the value of u (this
only happened in 6 cases out of 140).

5. Conclusions and outlook

This paper has introduced a hybrid MPC scheme based on
MILP to optimally manage, in a centralized way, the electrical
and thermal subsystems of a prototype smart house. The exper-
imental results show that the proposed control scheme achieves
the required performance (i.e., it avoids large constraint viola-
tions while aiming to minimize the expense for the consumer).
The battery state of charge SoC was directly obtained from the
available charge controller: the resulting quantization on the
SoC value has certainly caused a slight degradation of the MPC
performance as compared to having a non-quantized SoC es-
timate. Future work will be devoted to designing a state-of-
charge estimator to overcome this limitation. Another objec-
tive of future work will be to run simulations over longer pe-

riods, in order to be able to better evaluate the performance of
the proposed solution. Finally, one can observe that the com-
putation e↵ort for solving the MILP, although acceptable for a
proof of concept, would not be justified in a realistic implemen-
tation. Therefore, future e↵ort will be put in finding reliable
low-complexity approximations of the proposed hybrid MPC
law, that can lower the computation time, while still providing
an acceptable performance.
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