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Abstract— In this paper an approach for obtaining unique
solutions to forward and inverse kinematics of a spherical
parallel manipulator (SPM) system with revolute joints is pro-
posed. Kinematic analysis of a general SPM with revolute joints
is revisited and the proposed approach is formulated in the
form of easy-to-follow algorithms that are described in detail.
A graphical verification method using SPM computer-aided-
design (CAD) models is presented together with numerical
and experimental examples that confirm the correctness of the
proposed approach. It is expected that this approach can be
applied to SPMs with different geometries and can be useful
in designing real-time control systems of SPMs.

I. INTRODUCTION

Parallel manipulators are widely used for high speed,

high accuracy positioning with limited workspace appli-

cations, e.g. in flight and automobile simulators, medical

and industrial robotics, mechatronic applications, etc [1]–[3].

Among numerous types of parallel manipulators, spherical

parallel manipulators (SPMs) can be applied for designing

orientation wrist platforms for industrial robot end effectors,

solar or parabolic antenna orientation systems, medical and

rehabiliation robots [4]–[7]. A special configuration of an

SPM with revolute joints named the Agile Eye is proposed in

[8] for designing a three degree-of-freedom (DOF) optimal

camera orientation system. The modification of the Agile

Eye, the Agile Wrist, with enhanced load-carrying capacity

and reduced weight is extensively studied in [9]–[13].

Many approaches were applied to analyse different config-

urations of SPMs [4]–[16]. It is shown in [4] that direct kine-

matic problem of a general SPM with revolute joints leads to

a polynomial with at most eight solutions corresponding to

different poses of the manipulator top platform. Practically,

this polynomial is very complex and cannot be used for

manipulator control system design. Multiple solutions exist

in the SPM inverse kinematic problem. Nevertheless, unique

solutions to SPM forward and inverse kinematics are required

for designing real-time control systems of manipulators.

Considering special SPM configurations, e.g. the Agile

Wrist/Eye, the complexity of direct and inverse kinematic

problems reduces significantly and a closed form solutions

can be obtained [16]. An approach for producing a unique

solution to forward kinematics of the Agile Eye manipulator

is reported in [17]. The reported approach was applied only
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to one particular geometry of SPMs, i.e. the Agile Eye.

Moreover, the mentioned CAD based verification procedure

and identification of a unique solution to inverse kinematics

of the SPM are not considered in that work.

In this paper the kinematic analysis of 3-DOFs SPMs with

revolute joints is revisited and an approach for obtaining

unique solutions to forward and inverse kinematics of a gen-

eral SPM with revolute joints is proposed and discussed in

detail. A graphical verification method using CAD software

is presented together with a number of numerical examples

that confirm the correctness of the proposed approach.

II. KINEMATIC ANALYSIS OF A SPHERICAL

PARALLEL MANIPULATOR

The SPM kinematic analysis was extensively conducted

previously, e.g. in works [4]–[18]. Below, a brief summary

of SPM kinematics is introduced for completeness of the

developments and results presented in this paper.

A. Coordinate System

A model of a general symmetric SPM with revolute joints

is shown in Fig. 1. The SPM consists of two pyramid-shape

platforms, a base and a top mobile platforms, connected by

three equally spaced legs, numbered by i = 1, 2, 3, each

having two curved links. The axes of all joints, denoted by

unit vectors ui, vi, and wi, intersect at a common center

point, which is called the center of rotation. The dimensions

of the proximal and distal links are assumed to be α1 and

α2, respectively. Angles β and γ define the geometry of two

regular pyramids of the base and the top mobile platforms.

The motion of the top mobile platform is confined on the

surface of a sphere centered at the center of rotation.

The right-handed orthogonal coordinate system with its

origin located at the SPM rotation center is shown in Fig. 1.

Axis z is normal to the base pyramid platform and is directed

upwards, while axis y is located in the plane made by z and

u1. Input joint angles θi, i = 1, 2, 3, are measured from the

plane made by z axis and ui to the plane of a lower link.

Unit vectors ui, i = 1, 2, 3,for the axes of base joints are

defined as follows [10]:

ui = [sin ηi sin γ, cos ηi sin γ, − cos γ]T, (1)

where ηi, i = 1, 2, 3, are the angles between projections of

axes of the actuated revolutes on the base plane of the fixed

pyramid and a given reference in that plane. By symmetry

[5]

ηi = 2(i − 1)π/3. (2)
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Fig. 1. Kinematic model of a spherical parallel manipulator.

Unit vectors wi, i = 1, 2, 3, correspond to the axes of SPM

intermediate revolute joints and are obtained in terms of input

joint angles θi as below [10]:

wi =





sηi sγ cα1 − (cηi sθi − sηi cγ cθi) sαi

cηi sγ cα1 + (sηi sθi + cηi cγ cθi) sαi

−cγ cα1 + sγ cθi sαi



 , (3)

where s and c denote sine and cosine, respectively.

Unit vectors vi, i = 1, 2, 3, that are parallel to the axes of

SPM top revolute joints, define orientation of the SPM top

mobile platform.

B. Forward Kinematics

Considering the SPM forward kinematics problem, both ui

and wi are assumed to be known. The task is to find unknown

vectors vi [18].

For the closed loop chain of SPM the following constraint

equations hold [10]:

wi · vi = cosα2, i = 1, 2, 3. (4)

The geometry of the regular pyramid of the SPM top mobile

platform implies [10]

vi · vj = cosα3, i, j = 1, 2, 3, i 6= j (5)

where α3 is the angle between axes of the ith and jth top

joints. It is equal to the angle made by lateral edges of the

top pyramid, which takes the value

α3 = 2sin−1(sinβ cos
π

6
). (6)

Furthermore, unit vectors vi lead to [10]
∥

∥vi

∥

∥ = 1. (7)

There are several different approaches exist to obtain

solutions to SPM forward kinematics problem. In this study,

a combination of equations (4), (5) and (7) is utilized to

generate a system of three linear and six quadratic equations

of vectors vi [10]. This system of non-linear equations with 9

unknowns (components of three vi vectors) is solved using a

numerical method, which allows obtaining a unique solution

to the SPM forward kinematics problem as shown in the

subsequent sections of this study.

Components of normal vector N to the SPM top mobile

platform are defined as sums of the corresponding compo-

nents of vectors vi. Thus, the normal unit vector n is found

as

n =
N

‖ N ‖
, (8)

where N = [v1x + v2x + v3x, v1y + v2y + v3y, v1z + v2z + v3z]
T.

Normal unit vector n = [0, 0, 1]T if the SPM top mobile

platform is parallel to the base platform in the coordinate

system specified in Section II-A.

C. Inverse Kinematics

If the orientation of the SPM mobile platform is given, i.e.,

vectors vi are known, inverse kinematic solutions are defined

by three uncoupled equations for actuated joint angles θi, as

follows [13]:

AiT
2
i + 2BiTi + Ci = 0, i = 1, 2, 3, (9)

with

Ti =tan

(

θi

2

)

; (10)

Ai =(−sηisγcαi + sηicγsαi) · −vix+

+ (cηisγcαi − cηicγsαi) · viy+

+ (cγcαi − sγsαi) · viz − cosα2;

Bi = cηisαi · −vix + sηisαi · viy;

Ci =(−sηisγcαi − sηicγsαi) · −vix+

+ (cηisγcαi + cηicγsαi) · viy+

+ (−cγcαi + sγsαi) · viz − cosα2,

(11)

where vix, viy, and viz are the components of vector vi.

Equation (9) provides two solutions of angle θi for any

given orientation of the SPM top mobile platform [4]. Hence,

in total, there are eight solutions to inverse kinematics

problem.

III. PROPOSED APPROACH

Using the kinematic model of a general SPM with revolute

joints outlined in Section II, an approach for obtaining

unique forward and inverse kinematic solutions of a SPM is

proposed in this section. The approach is defined for a certain

initial assembly of a SPM with all proximal links rotated to

one side and attached to the base platform through actuated

joints, e.g. as shown in Fig. 1. The approach is presented

below in the form of the algorithms for obtaining unique

forward and inverse kinematic solutions of a general SPM.

A. Algorithm for Obtaining a Unique Forward Kinematics

Solution for a SPM

A unique forward kinematics solution in the form of

vectors vi is obtained as follows.

1) Use active joint angles θi:

• Calculate vectors ui using equation (1) (optional).

• Calculate vectors wi using equation (3).
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2) Construct a system of equations using equations (4), (5)

and (7): Equation (4) results to three linear equations,

whereas equations (5) and (7) give three quadratic equations

each. Thus, in total a system of equations with 9 unknown

components of three vectors vi is derived.

3) Solve the system of equations using a numerical method

to obtain vectors vi: A lot of numerical methods require ini-

tial input values to solve a system of equations. In the present

case, these values are the initial guesses of components x, y

and z of unit vectors vi, i = 1, 2, 3. Therefore, the signs of

these components depend on the accepted coordinate system.

Use an initial guess vector with a certain sequence of signs

to obtain a current unique solution for vectors vi. In the initial

guess vector absolute values can be chosen arbitrary, since

iterative numerical methods normally converge even if initial

values are far from the solution.

On the other hand, signs of values in the initial guess

vector are important. By changing the signs all possible eight

solutions for the SPM forward kinematics, i.e. vectors vi, can

be found. The correct sequence of signs corresponding to one

current real solution can be selected using the orientation of

vectors vi of a SPM in its reference configuration specified in

the accepted coordinate system. It can then be also verified

with vectors vi obtained from the SPM CAD model using

the method presented in Section III-C.

The forward kinematics numerical example in Section IV-

A reveals the numerical method and the initial guess vector

applied for calculations in this study.

B. Algorithm for Obtaining a Unique Inverse Kinematics

Solution for a SPM

Assuming that the same initial SPM assembly and a coor-

dinate system are considered for obtaining unique solutions

to the manipulator forward and inverse kinematics, actuated

joint angles θi, i = 1, 2, 3, can be found knowing vectors vi

corresponding to the current orientation of SPM top mobile

platform as follows:

1) Calculate Ai, Bi and Ci using equation (11).

2) Solve equation (9) for Ti.

3) Find θi from equation (10) using positive roots of

equation (9), i.e. positive values of Ti. The positive roots

are considered due to accepted SPM initial configuration

(working mode) where all three proximal links are rotated

to a positive direction of actuated joints.

This algorithm can also be used for verification of unique

forward kinematics solution obtained using the algorithm

described in Section III-A.

C. Graphical Identification of SPM Orientation with CAD

Model

The proposed approach is verified using a graphical

method for identifying SPM orientation using CAD models.

The method can be applied to various CAD software. In this

study the SolidWorks software is used to briefly formulate

the method as follows.

1) All three input joint angles of a SPM are specified

between predefined planes and are fixed using the

Fig. 2. A 3D printed prototype of the Agile Wrist manipulator.

Angle Mate tool available in the SolidWorks software.

Thus, a fixed orientation of a SPM is obtained.

2) Using the 3D Sketch tool all axes of joints are con-

nected with centerlines and the intersection point of

these axes is defined as the center of rotation of a

SPM.

3) The center of rotation is used as the origin point to

attach the SPM coordinate system (defined in Section

II-A) employing the Reference Geometry tool.

4) Three points are sketched on the top joints axes on the

distance of one unit (1mm) from the coordinate system

origin.

5) Three unit vectors vi, i = 1, 2, 3, are specified and

their coordinates relative to the inserted coordinate

system can be obtained using the Measure tool.

As a result, the SPM orientation, corresponding to three

input joint angles θi, is obtained in terms of three unit vectors

vi, i = 1, 2, 3.

IV. NUMERICAL EXAMPLES AND DISCUSSION

To demonstrate application of the proposed approach,

authors designed a SolidWorks CAD model and a 3D printed

prototype of the Agile Wrist manipulator. The prototype

includes three Dynamixel MX-106 servomotors fixed to the

base platform of the SPM and is assembled as shown in Fig.

2. In the Agile Wrist SPM configuration α1 = α2 = 90 deg.

with all three legs being identical. Three unit vectors ui as

well as vectors vi, i = 1, 2, 3, are mutually orthogonal [10].

This is resulted to β = γ = 54.75 deg.

The reference configuration of the Agile Wrist is chosen

such that all active joint angles θ1 = θ2 = θ3 = 135 deg.

and the axes of base and top joints are aligned as follows:

u1 = −v3, u2 = −v1, u3 = −v2.

In this reference configuration, the SPM top mobile and base

platforms are parallel to each other as illustrated in Fig. 2.

A. Calculating Orientation of the Agile Wrist

Consider the case with input angles θ1 = 95 deg.,

θ2 = 110 deg. and θ3 = 105 deg. which corresponds

to the top platform orientation shown in Fig. 3.

1357



Fig. 3. Orientation of the Agile Wrist SPM corresponding to actuated joint
angles θ1 = 95 deg., θ2 = 110 deg. and θ3 = 105 deg.

Following the algorithm outlined in Section III-A all

unit vectors ui and wi are calculated in MATLAB using

equations (1) and (3) as below:

u1 =





0
0.8166
−0.5771



 , u2 =





0.7072
−0.4083
−0.5771



 , u3 =





−0.7072
−0.4083
−0.5771





and

w1 =





−0.9962
−0.0503
−0.0712



 ,w2 =





0.2989
0.9125
−0.2793



 ,w3 =





0.6123
−0.7618
−0.2114



 .

Then, combining equations (4), (5) and (7) the system

of three linear and six quadratic equations is generated as

follows:



































































−0.9962v1x − 0.0503v1y − 0.0712v1z = 0

0.2989v2x + 0.9125v2y − 0.2793v2z = 0

0.6123v3x − 0.7618v3y − 0.2114v3z = 0

v1x · v2x + v1y · v2y + v1z · v2z = 0

v1x · v3x + v1y · v3y + v1z · v3z = 0

v2x · v3x + v2y · v3y + v2z · v3z = 0

v21x + v21y + v21z = 1

v22x + v22y + v22z = 1

v23x + v23y + v23z = 1

(12)

The system of non-linear equations (12) with 9 unknown

components of vectors vi is solved in MATLAB using

function fsolve with the initial guess vector

x0 = [−1, 1, 1, 1,±1, 1,−1,−1, 1]T. (13)

corresponding to vector [v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z]
T.

Function fsolve uses the trust-region-dogleg algorithm

[19] that requires initial input values to solve a system of

equations. The absolute values in vector x0 were chosen

arbitrarily, whereas the sequence of signs in vector x0 was

adopted from the orientation of vectors vi, i = 1, 2, 3, at the

Agile Wrist reference configuration and then verified with

numerous tests using the SolidWorks CAD software.

Fig. 4. Angle θi of a base actuated joint measured from the plane made
by axis z and vector ui to the plane of a proximal link.

As a result, the orientation of the Agile Wrist top mobile

platform corresponding to the given actuated joint angles is

found in terms of unit vectors vi:

v1 =





−0.0817
0.8230
0.5621



 , v2 =





0.9039
−0.1768
0.3896



 , v3 =





−0.4204
−0.5401
0.7291



 .

(14)

Verification of the unique forward kinematics solution (14)

of the considered SPM can be done using the graphical

method described in Section III-C. The procedure using the

SolidWorks is described below.

At first, the input joint angles are fixed using the Angle

Mate feature. The angle θ1 = 95 deg. is set from the plane

made by axis z and vector u1 to the plane of a corresponding

lower link in the direction shown in Fig. 4. Similarly, all three

actuated joint angles are set in the Agile Wrist CAD model,

ensuring the corresponding orientation of the top mobile

platform as shown in Fig. 3.

Then, using the 3D Sketch tool an intersection point of

axes of all SPM revolute joints is positioned. This point

defines the center of rotation of the SPM. The Reference

Geometry tool is used to attach the specified in Section II-A

right-handed orthogonal coordinate system to the center of

rotation.

Fig. 5 illustrates the centerlines of axes drawn from the

origin of the coordinate system through centers of joints of

the Agile Wrist top mobile platform. To specify unit vectors

vi three points are sketched on these centerlines of axes on

1 unit (1 mm) distance from the origin. XYZ coordinates

of these vectors relative to the coordinate system origin are

found using the Measure tool as shown in Fig. 6. In a similar

manner all three unit vectors vi are found as below:

v1 =





−0.0818
0.8229
0.5623



 , v2 =





0.9037
−0.1769
0.3898



 , v3 =





−0.4204
−0.5402
0.7292



 .

(15)

It can be observed that the values of vectors vi calculated

in MATLAB, equation (14), match the results (15) obtained

using the CAD model. Hence, the sequence of signs in the
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Fig. 5. Axes centerlines drawn in the SolidWorks using the 3D Sketch
tool.

Fig. 6. Coordinates of vector v1.

initial guess vector x0, defined in (13), ensures the correct

unique forward kinematic solution and can be used for this

SPM hereinafter in calculations.

In addition, normal unit vector n of the SPM top platform

is defined from equation (8) as follows:

n = [0.2321, 0.0613, 0.9708]T.

Indeed, this normal unit vector n can also be defined graph-

ically in the CAD model similarly to the way unit vectors vi

in (15) are obtained.

B. Inverse Kinematic Solution of the Agile Wrist

The unique Agile Wrist inverse kinematic solution for

the same SPM orientation can be obtained as described in

Section III-B. Assuming that vectors vi are given in the

form of (14), coefficients (11) are calculated in MATLAB.

Thus, three uncoupled quadratic equations (9) are written as

follows:

−0.9340 t21 + 2 · 0.0817 t1 + 0.9340 = 0

−0.8209 t22 + 2 · 0.2988 t2 + 0.8209 = 0

−0.9614 t23 + 2 · 0.2576 t3 + 0.9614 = 0.

(16)

From equation (16) the inverse kinematics solutions are

calculated using equation (10) in terms of actuated joint

angles θi in degrees as follows:

θ1 =

[

−85.0002
94.9998

]

, θ2 =

[

−70.0002
109.9998

]

, θ3 =

[

−75.0002
104.9998

]

.

TABLE I

THE RESULTS OF THE PROPOSED APPROACH AND THE APPROACH

PRESENTED IN [17]

θi input v1 v2 v3 θinv n

Proposed Approach

125 -0.3643 -0.0225 -0.9308 125 -0.7611

90 0.9310 0.0130 -0.3651 90 0.3344

75 -0.0207 0.9997 -0.0166 75 0.5558

Approach [17]

10 0.7719 -0.5664 -0.2886 - -

45 -0.6261 -0.5986 -0.4998 - -

60 -0.1104 -0.5664 0.8167 - -

Analysing above calculated roots of equation (16), it can

be observed that positive roots, i.e. positive actuated joint

angles θi, are equal to the initially given input angles θ1 = 95
deg., θ2 = 110 deg. and θ3 = 105 deg. in this example.

Hence, it can be concluded that the above obtained unique

forward kinematic solution, vectors vi in (14), is correct.

Note that there is 180 deg. difference between negative and

positive joint angles θi.
Similar numerical and graphical analyses for a number

of different orientations of the Agile Wrist SPM confirmed

the validity of the proposed approach. Calculated kinematic

solutions are used for motion generation of the Agile Wrist

prototype which can be viewed in the accompanying video

available at www.alaris.kz.

C. Comparison with the Approach [17]

The proposed approach was compared with the approach

for obtaining a unique solution to forward kinematics of the

Agile Eye presented in [17]. To facilitate the analysis in that

work, two orthogonal coordinate systems are set up along

the axes of top and base platform joints of the Agile Eye,

respectively. At the reference orientation these coordinate

systems coincide with each other and input joint angles are

all equal to 0. This reference orientation of the Agile Eye

is equivalent to the reference orientation of the Agile Wrist

CAD model, adopted in this paper, with all input joint angles

equal to 135 deg. as defined in Section IV-A. For comparison

purposes the transformation matrix T from the coordinate

system defined in Section II-A to the one defined in [17] is

derived in degrees as follows:

T =





cos 90 cos 35.3 cos 125.3
cos 45 cos 114.1 cos 125.3
cos 135 cos 114.1 cos 125.3



 . (17)

Authors considered a number of different sets of input

actuated joint angles θi input, i = 1, 2, 3. The calculated

results using both the approaches for one case are presented

in Table I. Fig. 7 illustrates the SPM configuration corre-

sponding to this case. The upper part of Table I contains

the results obtained using the approach proposed in this

work. The lower part of the table shows the values calculated

according to the formula presented in [17]. The input joint
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Fig. 7. The SPM configuration corresponding to Table I.

angles corresponding to the same SPM pose are given in

degrees and coordinates of unit vectors vi are provided in

two different coordinate systems corresponding to the two

approaches, respectively. Transformation matrix (17) can be

used to mathematically verify that vectors vi obtained by

both the approaches represent the same orientation of the

SPM. The results are also verified with the graphical method

described in Section III-C by attaching additional coordinate

system defined in [17].

Analysis of the calculated results in Table I shows that the

computations using both the approaches result in a correct

unique forward kinematic solution of the considered SPM in

terms of unit vectors vi. In addition, the proposed approach

allows calculating a unique inverse kinematic solution and a

normal unit vector of the SPM top mobile platform.

V. CONCLUSIONS AND FUTURE WORK

The proposed in this paper approach solves a challenging

kinematic problem of identifying unique forward and inverse

solutions of SPMs with revolute joints. A current forward

kinematic solution can be derived from a system of non-

linear equations solved in MATLAB using a numerical

iterative method with an initial guess vector. The sequence of

signs in the initial guess vector is defined taking into account

reference orientation of the SPM top mobile platform.

On the other hand, a unique inverse kinematic solution

corresponds to positive roots of the SPM inverse kine-

matic equation. A graphical method for identifying SPM

orientation using CAD models is presented and applied for

verification of the obtained kinematic solutions. Numerical

examples and comparison analysis with the Agile Wrist

SPM demonstrate application and correctness of the pro-

posed approach. Calculated unique kinematic solutions are

implemented for motion trajectory generation of a 3D printed

prototype of the Agile Wrist. The accompanying video of the

prototype motion is available at www.alaris.kz.

It is expected that this approach can be applied to SPMs

with different geometries and can be useful in designing

manipulator real-time control systems. Further work include

singularity and dynamic analysis of general SPM.
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