Power Transformer Modelling & Assessment

Almas Shintemirov

Almas Shintemirov

identification and decision making problems in technical systems.

Almas Shintemirov, PhD, is an Assistant Professor of Robotics and Mechatronics at Nazarbayev University, Kazakhstan. He obtained his Ph.D. degree in Electrical Engineering and Electronics from the University of Liverpool, the U.K, in 2009. His research focuses on intelligent monitoring, control and modelling of electromechanical systems.

978-3-659-35786-2

Intelligent Modelling and Condition Assessment of Power Transformers

Almas Shintemirov

Intelligent Modelling and Condition Assessment of Power Transformers

Almas Shintemirov

Intelligent Modelling and Condition Assessment of Power Transformers

LAP LAMBERT Academic Publishing

Impressum / Imprint

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Alle in diesem Buch genannten Marken und Produktnamen unterliegen warenzeichen-, marken- oder patentrechtlichem Schutz bzw. sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Inhaber. Die Wiedergabe von Marken, Produktnamen, Gebrauchsnamen, Handelsnamen, Warenbezeichnungen u.s.w. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutzgesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Bibliographic information published by the Deutsche Nationalbibliothek: The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Any brand names and product names mentioned in this book are subject to trademark, brand or patent protection and are trademarks or registered trademarks of their respective holders. The use of brand names, product names, common names, trade names, product descriptions etc. even without a particular marking in this works is in no way to be construed to mean that such names may be regarded as unrestricted in respect of trademark and brand protection legislation and could thus be used by anyone.

Coverbild / Cover image: www.ingimage.com

Verlag / Publisher: LAP LAMBERT Academic Publishing ist ein Imprint der / is a trademark of AV Akademikerverlag GmbH & Co. KG Heinrich-Böcking-Str. 6-8, 66121 Saarbrücken, Deutschland / Germany Email: info@lap-publishing.com

Herstellung: siehe letzte Seite / Printed at: see last page ISBN: 978-3-659-35786-2

Zual. / Approved by: Liverpool, The University of Liverpool, PhD Dissertation, 2009

Copyright © 2013 AV Akademikerverlag GmbH & Co. KG Alle Rechte vorbehalten. / All rights reserved. Saarbrücken 2013

Preface

Being one of the most expensive and important elements, a power transformer is a highly essential element, whose failures and damage may cause the outage of a power system. This may further lead to a standstill of dependable technological processes and, hence, to multiple financial losses. The transients occurring during transformer failure could affect major equipment of the interconnected power subsystems and, thereby, cause switching off of the latter by means of relay protection.

Computational intelligence techniques have been widely utilized for advancing power transformer condition assessment methods. This book presents a number of novel intelligent techniques and approaches to deal with power transformer winding distortion and deformation assessment problem based on frequency response analysis (FRA) and incipient faults classification problem in oil-filled power transformers based on dissolved gas analysis (DGA). Both theoretical introduction to the subject and practical examples using experimental measurements and simulation results are given. This book will benefit anyone associated with power transformer modelling and conditional assessment. It will also be useful for those working on applying computational intelligence to solving parameter identification and decision making problems in technical systems.

The work presented in this book is split into two areas, where the main topic is power transformer winding modelling and condition assessment using FRA. The second topic is devoted to intelligent transformer fault classification using DGA. Chapter 1 of the book presents background materials on transformer winding condition assessment using FRA and DGA. Chapter 2 introduces fundamentals of com-

viii Preface

putational intelligence techniques utilised in this research. Chapter 3 reviews lumped parameter models of power transformer core and windings for FRA. Chapter 4 discusses distributed parameter models of transformer windings for FRA. Chapter 5 proposes a model-based identification approach of power transformer parameters using evolutionary algorithms on the basis of FRA measurements. Chapter 6 studies the interpretation techniques of FRA measurements and presents a decision making framework for transformer winding condition assessment based on an evidential reasoning approach. Chapter 7 presents an intelligent fault classification approach to power transformer DGA implementing genetic programming and bootstrap techniques to improve the DGA interpretation accuracy. Chapter 8 concludes the book summarising presented in the book results.

Acknowledgments

This book presents the results of my 4 year doctoral research at the University of Liverpool, the United Kingdom. During my study I met many different people ready to help and to act as a source of inspiration. First of all, I express my sincere appreciation and acknowledgement to my supervisors, Professor Q. H. Wu and Dr. Wenhu Tang, for their constant support and guidance at every stage of this research work. They inspired me to experiment with many different ideas and made a great number of contributions, which allowed to complete this research project. Their intellectual advice, encouragement and invaluable discussions were the driving force in my work and have deeply broaden my knowledge in many areas, for which I am truly thankful.

Also I would like to thank the members of the Intelligence Engineering and Automation Group for their support and valuable discussions. Many thanks to Dr. Vivek Govinda, Dr. Thomas Hornik, Dr.

Preface ix

Zhen Lu, Dr. Andrew Tickle and Mr. Jonathan Buse for their friendship, which made my study in Liverpool interesting and versatile.

I am also indebted to Dr. N. Abeywickrama and Professor S. M. Gubanski from the Chalmers University of Technology, Göteborg, Sweden, for providing experimental data, and to Mr. H. Sun from the North China Electric Power University, Baoding, China, for valuable discussions on MTL models.

Many thanks go to the Department of Electrical Engineering and Electronics in the University of Liverpool, for providing research facilities that made possible conducting this research.

Financial support provided by the Center for International Programs of the Ministry of Education and Science of the Republic of Kazakhstan under the Presidential Bolashak Scholarship and the JSC Science Fund within the frame of the "Sharyktau" competition is immensely thanked and acknowledged.

Most of all, I want to thank my mam and dad, my sister Zhanna and brother Askhat, whose love and support miles away was a constant source of encouragement, without which this research work would not have been complete. I am deeply grateful to my wife Dinara for her love, patience, invaluable support and understanding through the whole period of my study in Liverpool. She gave me our beautiful children, Gulnaz and Alibek, and is constantly making my life rich and meaningful every day we are together.

Astana, Kazakhstan March 2013 Almas Shintemirov

Contents

P	refac	e		vii	
Li	st of	Symb	ools and Abbreviations	xvii	
1	Main Aspects of Transformer Condition Assessment				
	1.1	Introd	luction	1	
	1.2	FRA	for Transformer Winding Condition Assessment .	3	
		1.2.1	FRA Measurement Methods	4	
		1.2.2	Practical Assessment of Transformer		
			Winding Condition Based on FRA	8	
	1.3	DGA	for Oil-Filled Transformer Condition Assessment	12	
		1.3.1	Key Gas Analysis Method	13	
		1.3.2	Gas Ratio Methods	14	
	1.4	Drawl	backs of FRA and DGA Techniques	18	
2	Fun	damei	ntals of Computational		
	Inte	elligen	ce Techniques	19	
	2.1	Comp	outational Intelligence Concept	19	
		2.1.1	Logical Approach	20	
		2.1.2	Cybernetical Approach	20	
		2.1.3	Evolutionary Approach	22	
	2.2	Genet	cic Algorithms	24	
		2.2.1	GAs Representation	25	
		2.2.2	Fitness Evaluation	26	
		2.2.3	Selection Procedure	28	
		2.2.4	Genetic Operations in GAs	29	
		2.2.5	Operational Sequence of GAs	32	

xii Contents

	2.3	Genet	ic Programming	33
		2.3.1	Terminals and Functions	34
		2.3.2	Initialisation of GP Population	34
		2.3.3	Genetic Operations in GP	36
	2.4	Bacte	rial Swarming Algorithm	38
		2.4.1	Fundamentals of Bacterial Foraging	38
		2.4.2	BSA Mathematical Framework	39
	2.5	Evide	ntial Reasoning Approach	42
		2.5.1	Description of an Evaluation Problem	43
		2.5.2	ER Evaluation Framework	45
		2.5.3	Outline of Dempster-Shafer Theory	47
		2.5.4	ER Algorithm	49
		2.5.5	Determination of Attributes' Weights	51
	2.6	Summ	nary	52
3	Lun	nped I	Parameter Modelling of	
	Pov	ver Tra	ansformers for FRA	55
	3.1	Introd	luction	55
	3.2	Mathe	ematical Model of Transformer Core for FRA $$	57
		3.2.1	Laminated Core Parameters	57
		3.2.2	Equivalent Magnetic Circuit	58
		3.2.3	Equivalent Electrical Circuit	60
	3.3	Paran	neter Estimation of Transformer Core Equivalent	
		Circui	t	63
		3.3.1	Impedance Estimation	63
		3.3.2	Capacitance Estimation	65
	3.4	Mode	ls of A Single-Phase Power Transformer for FRA	66
		3.4.1	Two-Winding Model	67

Contents xiii

	3.5	Mathematical Model of a 3-Phase Power Transformer			
		for FF	RA	75	
	3.6	Estima	ation of Winding Inductances and Resistances	78	
		3.6.1	Analytical Calculation	78	
		3.6.2	Numerical Calculation Using FEM	82	
	3.7	Estima	ation of Winding Capacitances and Conductances	93	
		3.7.1	Effective Relative Permittivity of Insulation	94	
		3.7.2	Series Capacitances	95	
		3.7.3	Shunt Capacitances	100	
	3.8	Summ	ary	103	
4	Hig	h Freq	uency Distributed Parameter		
	Mo	delling	of Transformer Windings	105	
	4.1	Introd	luction	105	
	4.2	2 General Transmission Line Models			
		4.2.1	Two-conductor Transmission Line Model $\ .\ .\ .$	106	
		4.2.2	Multiconductor Transmission Line Model	109	
	4.3	MTL	Model of a Transformer Winding	113	
	4.4	Distributed Parameter Model of a Transformer Winding 11			
		4.4.1	Equivalent Distributed Parameter Circuit		
			of a Transformer Winding $\dots \dots \dots$.	114	
		4.4.2	Signal Propagation Along a Winding Disc	117	
		4.4.3	Mathematical Model of a Transformer Winding	122	
	4.5	Transf	fer Functions of a Transformer Winding for FRA	127	
	4.6	Estima	ation of Electrical Parameters	130	
	4.7	Summ	ary	132	
5	Inte	elligent	Identification of Transformer Parameters		
	Usi	ng Lur	nped Parameter Models and FRA	133	
	5.1	Introd	luction	133	

xiv Contents

	5.2	Model	l-Based Approach to Transformer Parameter	
		Identi	fication Using Evolutionary Algorithms	134
	5.3	Intelli	gent Identification of Transformer	
		Core l	Parameters	136
		5.3.1	Reference Response Simulation Using	
			a Three-Phase Power Transformer Model	136
		5.3.2	Identification of Local Magnetic Permeability .	146
		5.3.3	Identification of Conductivity and Capacitance .	149
		5.3.4	Frequency Response Simulation	
			of a Transformer Core	152
	5.4	Intelli	gent Identification of Transformer	
		Windi	ing Parameters	154
		5.4.1	Accuracy Analysis of BSA Parameter	
			Identification	154
		5.4.2	Comparison With GA	163
		5.4.3	Experimental FRA Results Analysis	167
	5.5	Summ	nary	172
6	Tra	nsforn	ner Winding Condition Assessment	
	Usi	ng Fre	quency Response Analysis	175
	6.1	Introd	luction	175
	6.2	Interp	oretation of FRA Measurements at	
		Freque	encies up to 1 MHz	176
		6.2.1	Normal Winding (NW)	177
		6.2.2	Short Circuited Turns (SCT)	179
		6.2.3	Clamping Failure (CF)	181
		6.2.4	Axial Displacement (AD)	181
		6.2.5	Radial Deformation (Hoop Buckling (HB))	183
		6.2.6	Residual Magnetisation (RM) $\dots \dots \dots$	187
		6.2.7	Poor Grounding (PG)	188

Contents xv

	0.3	Freque	ency Response Analysis at Frequencies	
		Above	e 1 MHz	188
		6.3.1	Distributed Parameter Model	
			Verification With FRA	188
		6.3.2	Winding Resonance Simulation	189
		6.3.3	Effect of Minor Winding Faults on	
			Frequency Responses	196
	6.4	Evider	ntial Reasoning Approach to Transformer	
		Windi	ng Condition Assessment	202
		6.4.1	Transformation of FRA Assessment Process	
			into ER Framework	202
		6.4.2	ER-Based Basic Evaluation Analysis	
			Model for FRA	203
		6.4.3	ER-Based General Evaluation Analysis	
			Model for FRA	204
		6.4.4	Condition Assessment of Transformer Windings	
			Using Basic Evaluation Analysis Model	206
		6.4.5	Aggregation of Subjective Judgements of	
			Different Experts Using the General	
			Evaluation Analysis Model	214
		6.4.6	Effect of Initial Conditions	
			on Overall Evaluation	217
	6.5	Summ	ary	220
7	Don	zon Tro	ansformers Fault Classification	
'			Dissolved Gas Analysis	223
	7.1		uction	
	7.1		Data Processing with Bootstrap	
	1.4	7.2.1	Fundamentals of Bootstrap	
		7.2.1	Initial DGA Data	
		1.4.4	IIIIIIai DGA Dala	441

xvi Contents

8	Cor	ıclusio	n	25 3
	7.5	Summ	nary	251
			With and Without GP Extracted Features	
		7.4.5	Classification Results of Data Processing	
			and KNN Neighbours	247
			Neurons, SVM Parameters	
			Extracted Features, ANN Hidden Layer	
		7.4.4	Effect of Change in the Number of GP	
			With Bootstrap	244
			Using Four GP Features Extracted	
		7.4.3	Combination of ANN, SVM and KNN	
			Without Bootstrap	242
			Using Four GP Features Extracted	
		7.4.2		-
	• • •	7.4.1	Intelligent Classifiers' Configuration	
	7.4		fication Results and Comparisons	
		7.3.4	Discussion	
		7.3.3	Feature Extraction With Bootstrapping	
		7.3.2	Feature Extraction Without Bootstrapping	
	1.0	7.3.1	GP Configuration	
	7.3	Featur	re Extraction With GP	
		,	Fault Classes	228
		7.2.4	Sample Number Equalisation for Different	
		7.2.3	DGA Data Statistical Analysis	228